# 6月25日檢討 ###### tags: `高中物理` ## EZ100 ### 1  $\theta=\omega t$ 為圈面**法線**方向與磁場的夾角 $\alpha=90^\circ-\theta$ 為圈面方向與磁場的夾角 磁通量 $\Phi_B(t)=BA\cos\theta=BA\cos(\omega t)$ 感應電動勢 $\mathcal{E}(t)=-N\dfrac{\text{d}\Phi_B(t)}{\text{d}t}=-N\dfrac{\text{d}}{\text{d}t}\left[BA\cos(\omega t)\right]=NBA\omega\sin(\omega t)$ - (A)(B) $\alpha=60^\circ$、$\theta=30^\circ$ $\implies\Phi_B=BA\cos 30^\circ=\dfrac{\sqrt{3}BA}{2}$、$\mathcal{E}=NBA\omega\sin 30^\circ=\dfrac{NBA\omega}{2}$ - (C\) $\mathcal{E}(t)$ 最大值為 $NBA\omega$ - (D) $\left|\overline{\mathcal{E}}\right|=N\dfrac{\Delta \Phi_B}{\Delta t}=N\dfrac{BA-0}{T/4}=\dfrac{NBA}{\pi/2\omega}$ - (E) 感應電動勢 $\mathcal{E}(t)$ 方向發生變化代表磁通量 $\Phi_B$ 經過極值,即圈面與磁場垂直時。 ### 2  ### 3  ### 4  $|\mathcal{E}|=\dfrac{\text{d}\Phi_B}{\text{d}t}=\dfrac{\text{d}}{\text{d}t}(BA)=\dfrac{\text{d}}{\text{d}t}(\beta t \pi r^2)=\beta\pi r^2$ ### 5  ### 6  1. $|\Phi_B(0)|=B(0)A(0)=\boxed{B_0\ell d}$ 2. $B(t)=B_0(1-\alpha t)=B_0-\alpha B_0t,\quad B'(t)=-\alpha B_0$ $A(t)=\ell x(t),\quad A'(t)=\ell x'(t)=\ell v(t),\quad A'(0)=\ell v(0)=0$ $\begin{align}|\mathcal{E}(0)|&=\left|\Phi_B'(0)\right|=\left|(BA)'\right|_{t=0}=\left|AB'+BA'\right|_{t=0}\\&=\left|A(0)B'(0)+B(0)A'(0)\right|=|\ell d\times(-\alpha B_0)+B_0\times 0|\\&=\boxed{\ell d \alpha B_0}\end{align}$ 3. 感應電流方向:順時針、由B到A 感應電流量值 $I(0)=\dfrac{|\mathcal{E}(0)|}{R}=\boxed{\dfrac{\ell d \alpha B_0}{R}}$ 4. 加速度量值 $a(0)=\dfrac{F(0)}{m}=\dfrac{\ell B(0)I(0)}{m}=\dfrac{\ell B_0\frac{\ell d \alpha B_0}{R}}{m}=\boxed{\dfrac{\ell^2B_0^2\alpha d}{mR}}$ ### 7  $v^2=0^2+2ad\implies v=\sqrt{2ad}$ $I=\dfrac{\mathcal{E}}{R}=\dfrac{B\ell}{R}\dfrac{\text{d}x}{\text{d}t}=\dfrac{B\ell v}{R}=\boxed{\dfrac{B\ell \sqrt{ad}}{R}}$ ## 歷屆107 物理 ### 第9題  ### 第13題   ### 第16題   ### 非選擇一   ## 歷屆107 化學 ### 第8題 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up