# Single-view Metrology <style> figure { padding: 4px; margin: auto; text-align: center; } figcaption { background-color: black; color: white; font-style: italic; padding: 1px; text-align: center; } </style> :::success Recover 3D structure with a single image. ::: ## 2D Points and Lines at Infinity ### 2D Line <figure> <img src="https://hackmd.io/_uploads/BJPmvO6Y6.png" width="500"> </figure> $$ x \in l \ \Longleftrightarrow \ x^{T}l = l^{T}x = 0 $$ ### 2D Line Intersection <figure> <img src="https://hackmd.io/_uploads/rk4___Ttp.png" width="200"> </figure> $$ x = l \times l' $$ ### 2D Infinity Point <figure> <img src="https://hackmd.io/_uploads/HJBEK_aF6.png" width="300"> </figure> $$ l \times l' \propto \begin{bmatrix} b \\ -a \\ 0 \end{bmatrix} = x_{\infty} $$ ### 2D Infinity Line 2D Infinity Points form a line at infinity. <figure> <img src="https://hackmd.io/_uploads/HJPR4r156.png" width="500"> </figure> ## Vanishing Point - Any two parallel lines have the same vanishing point. - The ray from camera center $C$ through point $v$ is parallel to the lines. - An image may have more than one vanishing point. ![image](https://hackmd.io/_uploads/HJ7qO7kc6.png) ## Vanishing Line 2D vanishing points form a line at infinity. <figure> <img src="https://hackmd.io/_uploads/ByGm47k5T.png" width="400"> </figure> $$ v = (p_{1} \times q_{1}) \times (p_{1} \times q_{1}) $$ ## Height Measurement ### Cross Ratio A projective invariant. As long as the transformation is "linear", maping line to line, the ratio before and after transformation would be the same. ![image](https://hackmd.io/_uploads/rJav8QJ5T.png) ### Height Measurement without a Ruler With cross ratio invariant and vanishing line, we can measure the height of object in the image. ![image](https://hackmd.io/_uploads/By-ErXk9T.png) ## Supplement - Interesting question: which one is higher? The camera or the man in the parachute? ![image](https://hackmd.io/_uploads/HkxAmk0Fa.png) Ans: Camera, because the parachutist is below the horizon (vanishing line). ## Reference - https://web.stanford.edu/class/cs231a/course_notes/02-single-view-metrology.pdf - https://www.cis.upenn.edu/~cis580/Spring2015/Lectures/cis580-04-singleview.pdf