# KG_Rec: - New Alignment Method: - Alignment By: - (BM25) + BERT (Anserini) - IMDB(ml1m)(query) <-> dbpedia(document) (predict.sh) - ranking method 1.5h - top-1 - top-10 - top-20 - top-50 - top-100 - fine-tuned BERT alignment - IMDB -> dbpedia - how many 1? - standard of alignment 1.5h - finished - find score of ranking 4h - range(-1 ~ 1) - < -0.9 rate - === 9/15 ==== - BM25 Baseline - recall with top alignment (Jacky) - Recommendation Result (Jacky + Ivy) - Random - Fully Random - random * 1 - random * 10 - random * 20 - random * 50 - random * 100 - Topic Alignment + IR - focus on unlinked - BM25+BERT - BM25 - Topic Alignment + Random - focus on unlinked - Random - seed alignment fine-tuned BERT (Jeanie) - manipulate threshold - Case Study - Number of Nodes & Edges - Merge all aligned nodes / different nodes - Recommendation on Ripple Net (Jeanie) - BM25 Baseline - SoTA of KG + Recommendation (Jeanie) - Leaderboard: https://paperswithcode.com/task/recommendation-systems - Graph Construction: (Ivy 8/29) - 1. connect only Items & Entities - 2. Connect Entities with Users - Connect all Entity neighbor to the user - Connect some Entity neighbor to the user - 0.3 - 0.5 - 0.7 - Recommendation By: - KGAT (freebase -> dbpedia) 4h - ripple net - Evaluate By: - Recall (recommendation) - NDCG (recommendation) - hit@10 (recommendation) 1h - f1 (recommendation) 1h - Topic-based Alignment (Alignment) 1h - IMDB(ml1m) <-> dbpedia - Code problem - crawl - crawl by anserini? [freebase_anserini](https://github.com/castorini/anserini/blob/master/docs/freebase.md) - source code modification: - Anserini: convert_to_jsonl -> add a line to admit null string. - UI-BERT: - Sample - user review for item? - loss & math - baseline (BPR, ...) - survey to avoid dulplicate idea - how to predict - Measure the importance of each item to user: - 1. PageRank -> better version from pprgo (Jacky 8/29) - 2. Sample a subgraph with similar users - KL-Divergence / cross entropy (Jeanie 8/29) - pick a user i - user adj by average / by rating+softmax (every score) / by rating+softmax (only >= 3) - KL by user i and others - top-100 similarity - Reformer(local nearest neighbor) - Group Recommendation - 3. Train on Embedding (Baseline: TPR) # KG_Rec 8/27: - summarzation: - http://nlpprogress.com/english/summarization.html - https://arxiv.org/pdf/1808.10792.pdf?fbclid=IwAR36a58Jis1df1zaj9eZGa6qI8gsFqCfqa7UJNw8cffR6IhSE3Ut_lxfIaM - https://www.aclweb.org/anthology/P17-1099.pdf?fbclid=IwAR031urH_V-ZVpk3jYK1EiLrF5iWq0bb7eeIsjuU-vZrDMZDAM_Lvv-ZLOI