# $$\int \sqrt{\tan x}\ dx$$ $使用代換積分法(u-substitution)$ $\begin{split} \\令\ u &= \sqrt{\tan x} \\\\ u^{2} &= \tan x \\\\ 2u \ du &= \sec^{2}x\ dx \\\\ dx &= \dfrac{2u\ du}{\sec^{2}x} \\\\ \end{split}$ 然而$\sec^{2}x$並不是$u$的函數 因此要將$\sec^{2}x$轉為$u$的函數 所以利用 $\tan x = u^{2}$ $\tan^{2}x = u^{4}$ 又 $\tan^{2}x = \sec^{2}-1$ 所以 $\sec^{2}-1 = u^{4}$ $\sec^{2} = u^{4}+1$ $dx = \dfrac{2u\ du}{u^{4}+1}$ >代入 $\sqrt{\tan x}=u$<br /> $dx = \dfrac{2u\ du}{u^{4}+1}$ $\quad \displaystyle \int {\sqrt{\tan x}\ dx}$ $\begin{align} &=\displaystyle \int {u \cdot \dfrac{2u}{u^{4}+1}\ du}\\ \\ &=\displaystyle \int {\dfrac{2u^{2}}{u^{4}+1}\ du}\\ \\ &=\displaystyle \int {\dfrac{\dfrac{2u^{2}}{u^{2}}}{\dfrac{u^{4}+1}{u^{2}}}\ du}\\ \\&=\displaystyle \int {\dfrac{2}{u^{2}+\dfrac{1}{u^{2}}}\ du} \end{align}$ >$\begin{align} u^{2}+\dfrac{1}{u^{2}} &= (u)^{2}+(\dfrac{1}{u})^{2}\\ \\ &= (u)^{2}+2(u)(\dfrac{1}{u})+(\dfrac{1}{u})^{2}-2(u)(\dfrac{1}{u})\\ \\ &=(u+\dfrac{1}{u})^{2}-2 \end{align}$ $\begin{align} \\\dfrac{d}{du}(u+\dfrac{1}{u}) &=1-\dfrac{1}{u^{2}} \end{align}$ >$\begin{align} u^{2}+\dfrac{1}{u^{2}} &= (u)^{2}+(\dfrac{1}{u})^{2}\\ \\ &= (u)^{2}-2(u)(\dfrac{1}{u})+(\dfrac{1}{u})^{2}+2(u)(\dfrac{1}{u})\\ \\ &=(u-\dfrac{1}{u})^{2}+2 \end{align}$ $\begin{align} \\\dfrac{d}{du}(u-\dfrac{1}{u}) =1+\dfrac{1}{u^{2}} \end{align}$ 拆成兩部分 $\begin{align} \\ &=\displaystyle \int {\dfrac{1-\dfrac{1}{u^{2}}}{(u+\dfrac{1}{u})^{2}-2}+\dfrac{1+\dfrac{1}{u^{2}}}{(u-\dfrac{1}{u})^{2}+2}\ du} \end{align}$ >令 >$t=u+\dfrac{1}{u}$ >$w=u-\dfrac{1}{u}$ >$dt=(1-\dfrac{1}{u^{2}})\ du$ >$dw=(1+\dfrac{1}{u^{2}})\ du$ 代換 $\begin{align} \\ &=\displaystyle \int \dfrac{1}{t^{2}-2}\ dt\ +\ \displaystyle \int \dfrac{1}{w^{2}+2}\ dw \end{align}$ >$\displaystyle \int \dfrac{1}{x^{2}-a^{2}}\ dx=\dfrac{-1}{a}\ \tanh^{-1}(\dfrac{x}{a})$ > >$\displaystyle \int \dfrac{1}{x^{2}+a^{2}}\ dx=\dfrac{1}{a}\ \tan^{-1}(\dfrac{x}{a})$ $\begin{align} &=\dfrac{-1}{\sqrt{2}}\ \tanh^{-1}(\dfrac{t}{\sqrt{2}})+\dfrac{1}{\sqrt{2}}\ \tan^{-1}(\dfrac{w}{\sqrt{2}})\\ \\ &=\dfrac{-1}{\sqrt{2}}\ \tanh^{-1}(\dfrac{u+\dfrac{1}{u}}{\sqrt{2}})+\dfrac{1}{\sqrt{2}}\ \tan^{-1}(\dfrac{u-\dfrac{1}{u}}{\sqrt{2}})\\ \end{align}$ >代入 >$\begin{align} >u&=\sqrt{\tan x} >\\\dfrac{1}{u} &=\sqrt{\cot x} >\end{align}$ $=\dfrac{-1}{\sqrt{2}}\ \tanh^{-1}(\dfrac{\sqrt{\tan x}+\sqrt{\cot x}}{\sqrt{2}})+\dfrac{1}{\sqrt{2}}\ \tan^{-1}(\dfrac{\sqrt{\tan x}-\sqrt{\cot x}}{\sqrt{2}})+C$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up