# Graph Neural Networks ###### tags: `機器學習` 因為網路上資源頗多,所以這邊就貼上看起來還不錯的學習資源當作參考。 reference: [YT 李弘毅 - GNN](https://www.youtube.com/watch?v=eybCCtNKwzA) 其他筆記: * [番外.李宏毅学习笔记.12.GNN](https://blog.csdn.net/oldmao_2001/article/details/105457201) * [【李宏毅2020 ML/DL】P18-19 Graph Neural Network](https://blog.csdn.net/weixin_42815609/article/details/107577956) * [閱讀筆記 : A Comprehensive Survey on Graph Neural Networks ( Spatial-based ConvGNNs 篇)](https://z8663z.medium.com/%E9%96%B1%E8%AE%80%E7%AD%86%E8%A8%98-a-comprehensive-survey-on-graph-neural-networks-spatial-based-convgnns-%E7%AF%87-3aaeca24f371) <br/> ## 術語補充: 1. **Aggregation:** 使用某 node neighbor feature update 下一層的hidden state。 2. **Readout:** 將所有 node 的 feature 集合成一個輸出。 ( 因為一個 graph 通常就是要輸出一個結果嘛!例如: 一個分子是甚麼種類。) <br/> ## 作法參考: 1. [NN4G ->Neural Network for Graphs: A Contextual Constructive Approach](https://ieeexplore.ieee.org/document/4773279)   2. DCNN(Dynamic Convolution Neural Network) 3. DGC (Dynamic Group Convolution) 4. MoNET (Mixture Model Network) - 事先定義好 weight  5. GAT (Graph Attension Network) - 自己去學鄰居的 weighted sum,對鄰居做 attension 6. GIN (Graph isomorphism Network)  影片: https://www.youtube.com/watch?v=M9ht8vsVEw8
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up