# TD 7 -- Introduction a l'Intelligence Artificielle et à la Theorie des Jeux ###### tags `TD` `M1 S1` `IA` [Sommaire](/8Sa-Z4QBS1ep0xPwtzigJA) > [time= 20 nov 2020] ## Exercice 1 ![](https://i.imgur.com/2xnCNcY.png) $$ \begin{align} P(A) &= \frac{2}{3} \\ P(B) &= \frac{1}{3} \\ \\ \widehat P(T_1=0 | A) &= \frac{2}{6} = \frac{1}{3}\\ \widehat P(T_1=1 | A) &= \frac{2}{3} \\ \widehat P(T_1=0 | B) &= 1 \\ \widehat P(T_1=1 | B) &= 0 \\ \\ \widehat P(T_2=V | A) &= \frac{5}{6} \\ \widehat P(T_2=F | A) &= \frac{1}{6} \\ \widehat P(T_2=V | B) &= 0 \\ \widehat P(T_2=F | B) &= 1 \\ \\ \widehat P(T_3=O | A) &= \frac{1}{6} \\ \widehat P(T_3=I | A) &= \frac{1}{3} \\ \widehat P(T_3=N | A) &= \frac{1}{2} \\ \widehat P(T_3=O | B) &= \frac{2}{3} \\ \widehat P(T_3=I | B) &= 0 \\ P(T_3=N | B) &= \frac{1}{3} \\ \end{align} $$ 11: Pour les entré 1, F, O $$ P(A|(1, F, O)) = P(1|A) \times P(F|A) \times P(O|A) = \frac{2}{3} \times \frac{1}{6} \times \frac{1}{6} = \frac{2}{108} = \frac{1}{54}\\ P(B|(1, F, O)) = P(1|B) \times P(F|B) \times P(O|B) = 0 \times 1 \times \frac{2}{3} = 0\\ $$ Donc $C_{Bayes}(1, F, 0) = A$ Meme chose pour les autres. t1: ```graphviz Digraph g { t3 [label="T3 (6, 3)"] t3_n [label="T2 (3, 1)"] t3_i [label="A (2, 0)" color=green] t3_o [label="T2 (1, 2)"] t3 -> t3_n [label="N"] t3 -> t3_i [label="I"] t3 -> t3_o [label="O"] t2n_v [label="A (2, 0)" color=green] t2n_f [label="T1 (1, 1)"] t3_n -> t2n_v [label="V"] t3_n -> t2n_f [label="F"] t2o_v [label="A (1, 0)" color=green] t2o_f [label="B (0, 1)" color=blue] t3_o -> t2o_v [label="V"] t3_o -> t2o_f [label="F"] t1v_0 [label="A (1, 0)" color=green] t1v_1 [label="B (0, 1)" color=blue] t2n_f -> t1v_0 t2n_f -> t1v_1 } ``` t1 est un arbre est bien parfait ```graphviz Digraph g { t1 [label="T1 (6, 3)"] t1_0 [label="T2 (2, 3)"] t1_1 [label="A (4, 0)" color=green] t1 -> t1_0 [label="0"] t1 -> t1_1 [label="1"] t2_0V [label="A (2, 0)" color=green] t2_0F [label="B (0, 3)" color=red] t1_0 -> t2_0V t1_0 -> t2_0F } ``` t2 est un arbre est bien parfait $$ Gini((6, 3)) = 1 - (6/9)^2 - (3/9)^2 = 1 - \frac{4}{9} - \frac{1}{9} = \frac{6}{9}\\ Gini((2, 3)) = 1 - (2/5)^2 - (3/5)^2) = \frac{12}{25}\\ Gini((4, 0)) = 1 - (4/4)^2 - 0 = 0\\ Grain(T1, A) = \frac{6}{9} - \frac{12}{25} \times \frac{5}{9} $$ ... On compare tout les gain et on obtiens: - T2 - T1 - T3 Avec entropie: