### Convolution Neural Network

---
## 1. Perceptron
----
### Binatry Classification Problem
Given a trainging data set
$S = \{ \ (x^{i},y_i) \ | \ x^i\in R, \ y_i \in \{-1,1\}\}$
$x^i \in A_{+}$ if and only if $y_i \ = \ 1$,
$x^i \in A_{-}$ if and only if $y_i \ = \ -1$,

----

----
### Rosenblatt's Perceptron

Demo!
---
## 2. Neural Network

----
### Neuron

----

$\vec{H}^{*}=
\begin{bmatrix}
\vec{H}^{*}_0\\
\vec{H}^{*}_1\\
\vec{H}^{*}_2
\end{bmatrix}=
\begin{bmatrix}
f \ (\vec{w_0} \cdot \vec{x})\\
f \ (\vec{w_1} \cdot \vec{x})\\
f \ (\vec{w_2} \cdot \vec{x})\\
\end{bmatrix}= f \ \Big{(} W \cdot \vec{x} \Big{)}$
----
### Feed Forward

----
### Gradient Descent
Minimization problem: $min \ L(x)$

$$ \vartriangle x^{i+1} := x^{i+1} - x^{i} = - \eta \ \triangledown L(x^i)$$
----
### Backpropogation
----

$\frac{\partial L}{\partial V[i][j]}=\frac{\partial L}{\partial O[i]}\frac{\partial O[i]}{\partial V[i][j]}=\frac{\partial L}{\partial O[i]}H^{*}[j]$
----
$\frac{\partial L}{\partial O[k]}=\frac{\partial L}{\partial O^*[k]}\frac{\partial O^*[k]}{\partial O[k]}=-(T[k]-O^{*}[k])\sigma'(O[k])$
$\sigma'(O[k])=\sigma(O[k])(1-\sigma(O[k]))=O^*[k](1-O^*[k])$
$\triangle V[i][j]=-\eta\frac{\partial L }{\partial V[i][j]}=-\eta \frac{\partial L}{\partial O[i]} H^{*}[j]$
$\triangle c[k] = -\eta\frac{\partial L}{\partial c[k]}=-\eta\frac{\partial L}{\partial O[k]}$
----

$\frac{\partial L}{\partial W[i][j]}=\frac{\partial L}{\partial H[i]}\frac{\partial H[i]}{\partial W[i][j]}=\frac{\partial L}{\partial H[i]}I[j]$
----
$\frac{\partial L}{\partial H[i]}=\frac{\partial L}{\partial H^{*}[i]}\frac{\partial H^{*}[i]}{\partial H[i]}=\Big{(} \sum_{l=0}^{2}\frac{\partial L}{\partial O[l]}\frac{\partial O[l]}{\partial H^{*}[i]}\Big{)}\sigma'(H[i])$
$=\Big{(} \sum_{l=0}^{2}\frac{\partial L}{\partial O[l]}\frac{\partial O[l]}{\partial H^{*}[i]}\Big{)}H^*[i](1-H^*[i])$
$=\Big{(} \sum_{l=0}^{2}\frac{\partial L}{\partial O[l]}V[l][i]\Big{)}H^*[i](1-H^*[i])$
$\triangle W[i][j]=-\eta\frac{\partial L}{\partial W[i][j]}=-\eta\frac{\partial L}{\partial H[i]}I[j]$
$\triangle b[k] = -\eta\frac{\partial L}{\partial b[k]}=-\eta\frac{\partial L}{\partial H[k]}$
---
## 3. CNN

----
### Convolution

----

[Demo](https://doodle-draw.herokuapp.com/conv)
----
### Pooling

---
## 4. Demo
[Doodle Draw](https://doodle-draw.herokuapp.com/draw)
[Github](https://github.com/jarcomatolsavisch/doodle-drawing)
---
## 5. Resources
[Neural Networks Chart](https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464)
{"metaMigratedAt":"2023-06-16T05:15:49.332Z","metaMigratedFrom":"YAML","title":"CNN (Convolution Neural Network)","breaks":true,"slideOptions":"{\"theme\":\"moon\",\"transition\":\"convex\"}","contributors":"[{\"id\":\"8fc668f4-0592-4518-bd67-b0c63754b314\",\"add\":5087,\"del\":1775}]"}