Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hi, I have a question about one of our exam problems. How do I find the derivative of $$f\left(x\right)=5x^{2}+11x-6?$$ </div></div> <div><div class="alert blue"> To begin, you must understand what a derivative function is. The derivative f'(x) is the slope of a function f(x) at a point. We can also classify the derivative as the instantaneous rate of change at x=a where a is a real number. The derivative of a function f'(x) allows us to see how he function f(x) changes across a time interval. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I see. How do I begin? </div></div> <div><img class="left"/><div class="alert gray"> Is there any equation I need to use? Maybe the limit definition of a derivative? </div></div> <div><div class="alert blue"> Yes, to find the derivative we use the equation $$f'(x)=\lim _{h\to \:0}\left(\frac{f\left(x+h\right)-f\left(x\right)}{h}\right)$$ where h represents the change in x </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> How do we use $$f\left(x\right)=5x^{2}+11x-6$$ and $$f'\left(x\right)=\lim _{h\to \:0}\left(\frac{f\left(x+h\right)-f\left(x\right)}{h}\right)$$ to find the derivative? Do we simply plug in (x+h) for every x in $$5x^{2}+11x-6$$ subtracted by $$5x^{2}+11x-6?$$ </div></div> <div><div class="alert blue"> Exactly, just don't forget that it is all divided by h. $$f'\left(x\right)=\lim _{h\to \:0}\left(\frac{f\left(x+h\right)-f\left(x\right)}{h}\right)$$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> So our equation should look like:$$f'\left(x\right)=\lim _{h\to \:0}\frac{\left[5\left(x+h\right)^2+11\left(x+h\right)-6\right]-\left[5x^2+11x-6\right]}{h}$$ and after a little algebra and foiling, I came up with this:$$f'\left(x\right)=\lim _{h\to \:0}\frac{\left[5\left(x^2+2hx+h^2\right)+11x+11h-6\right]-\left[5x^2+11x-6\right]}{h}$$ Now all I have to do is multiply $$\left(x^{2}+2hx+h^{2}\right)$$ by 5 and $$\left[5x^{2}+11x-6\right]$$ by -1. Also combine like terms. So now I have: $$f'\left(x\right)=\lim _{h\to 0}\left(\frac{10hx+5h^2+11h}{h}\right)$$ Then we can eliminate the two h leaving us with $$f'\left(x\right)=\lim _{h\to 0}10x+5h+11$$ </div></div> <div><div class="alert blue"> Since we are finding the limit of h as it approaches 0, we plug in 0 for any h's left in the equation. This leaves us with our instantaneous rate of change or derivative of f(x). So if you plug in 0 for any h, you are left with: $$f'\left(x\right)=10x+5\left(0\right)+11$$ $$f'\left(x\right)=10x+11$$ The derivative of $$f\left(x\right)=5x^2+11x-6$$ is: $$f'\left(x\right)=10x+11$$ </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.