Math 181 Miniproject 3: Texting Lesson.md
---
My lesson Topic
===
<style>
body {
background-color: #eeeeee;
}
h1 {
color: maroon;
margin-left: 40px;
}
.gray {
margin-left: 50px ;
margin-right: 29%;
font-weight: 500;
color: #000000;
background-color: #cccccc;
border-color: #aaaaaa;
}
.blue {
display: inline-block;
margin-left: 29% ;
margin-right: 0%;
width: -webkit-calc(70% - 50px);
width: -moz-calc(70% - 50px);
width: calc(70% - 50px);
font-weight: 500;
color: #fff;
border-color: #336699;
background-color: #337799;
}
.left {
content:url("https://i.imgur.com/rUsxo7j.png");
width:50px;
border-radius: 50%;
float:left;
}
.right{
content:url("https://i.imgur.com/5ALcyl3.png"); width:50px;
border-radius: 50%;
display: inline-block;
vertical-align:top;
}
</style>
<div id="container" style=" padding: 6px;
color: #fff;
border-color: #336699;
background-color: #337799;
display: flex;
justify-content: space-between;
margin-bottom:3px;">
<div>
<i class="fa fa-envelope fa-2x"></i>
</div>
<div>
<i class="fa fa-camera fa-2x"></i>
</div>
<div>
<i class="fa fa-comments fa-2x"></i>
</div>
<div>
<i class="fa fa-address-card fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-phone fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-list-ul fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-user-plus fa-2x" aria-hidden="true"></i>
</div>
</div>
<div><img class="left"/><div class="alert gray">
Hi, I have a question about one of our exam problems. How do I find the derivative of
$$f\left(x\right)=5x^{2}+11x-6?$$
</div></div>
<div><div class="alert blue">
To begin, you must understand what a derivative function is. The derivative f'(x) is the slope of a function f(x) at a point. We can also classify the derivative as the instantaneous rate of change at x=a where a is a real number. The derivative of a function f'(x) allows us to see how he function f(x) changes across a time interval.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
I see. How do I begin?
</div></div>
<div><img class="left"/><div class="alert gray">
Is there any equation I need to use? Maybe the limit definition of a derivative?
</div></div>
<div><div class="alert blue">
Yes, to find the derivative we use the equation $$f'(x)=\lim _{h\to \:0}\left(\frac{f\left(x+h\right)-f\left(x\right)}{h}\right)$$
where h represents the change in x
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
How do we use $$f\left(x\right)=5x^{2}+11x-6$$
and $$f'\left(x\right)=\lim _{h\to \:0}\left(\frac{f\left(x+h\right)-f\left(x\right)}{h}\right)$$ to find the derivative? Do we simply plug in (x+h) for every x in $$5x^{2}+11x-6$$ subtracted by $$5x^{2}+11x-6?$$
</div></div>
<div><div class="alert blue">
Exactly, just don't forget that it is all divided by h.
$$f'\left(x\right)=\lim _{h\to \:0}\left(\frac{f\left(x+h\right)-f\left(x\right)}{h}\right)$$
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
So our equation should look like:$$f'\left(x\right)=\lim _{h\to \:0}\frac{\left[5\left(x+h\right)^2+11\left(x+h\right)-6\right]-\left[5x^2+11x-6\right]}{h}$$
and after a little algebra and foiling, I came up with this:$$f'\left(x\right)=\lim _{h\to \:0}\frac{\left[5\left(x^2+2hx+h^2\right)+11x+11h-6\right]-\left[5x^2+11x-6\right]}{h}$$
Now all I have to do is multiply $$\left(x^{2}+2hx+h^{2}\right)$$ by 5 and $$\left[5x^{2}+11x-6\right]$$ by -1. Also combine like terms. So now I have:
$$f'\left(x\right)=\lim _{h\to 0}\left(\frac{10hx+5h^2+11h}{h}\right)$$
Then we can eliminate the two h leaving us with $$f'\left(x\right)=\lim _{h\to 0}10x+5h+11$$
</div></div>
<div><div class="alert blue">
Since we are finding the limit of h as it approaches 0, we plug in 0 for any h's left in the equation. This leaves us with our instantaneous rate of change or derivative of f(x).
So if you plug in 0 for any h, you are left with:
$$f'\left(x\right)=10x+5\left(0\right)+11$$
$$f'\left(x\right)=10x+11$$
The derivative of
$$f\left(x\right)=5x^2+11x-6$$
is:
$$f'\left(x\right)=10x+11$$
</div><img class="right"/></div>
---
To submit this assignment click on the Publish button . Then copy the url of the final document and submit it in Canvas.