Math 182 Miniproject 1 Partial Fractions.md --- Math 182 Miniproject 1 Partial Fractions === **Overview:** In this project we explore more advanced partial fraction decomposition than we covered during class. **Prerequisites:** Section 5.5 of _Active Calculus_ and a strong background in solving systems of linear equations. For this miniproject we will need to know the general theory of partial fraction decompositions. We can rewrite a rational function $\frac{f(x)}{g(x)}$ by factoring $g(x)$ and looking at the powers of unique factors. | Factor of $g(x)$ | Term in partial fraction | | -------- | -------- | | $ax+b$ | $\frac{A}{ax+b}$ | | $(ax+b)^k$ | $\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_k}{(ax+b)^k}$ | | $ax^2+bx+c$ | $\frac{Ax+B}{ax^2+bx+c}$ | | $(ax^2+bx+c)^k$ | $\frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+\cdots+\frac{A_kx+B_k}{(ax^2+bx+c)^k}$ | If the degree of $f(x)$ is greater than or equal to the degree of $g(x)$, then we have to do long division before finding the partial fraction decomposition. __Example.__ The fraction $$\frac{4x^4+34x63+71x^2-32x-128}{x^2(x+4)^3}$$ has a partial fraction decomposition of the form $$ \frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+4}+\frac{D}{(x+4)^2}+\frac{E}{(x+4)^3}. $$ __Example.__ The fraction $$\frac{x^6+x^4+x^3-x^2-1}{x^3(x^2+1)^2}$$ has a partial fraction decomposition of the form $$ \frac{A}{x}+\frac{B}{x^2}+\frac{C}{x^3}+\frac{Dx+E}{x^2+1}+\frac{Fx+G}{(x^2+1)^2}. $$ ___ __Problem 1.__ Find the partial fraction decomposition of the function $$f(x)=\frac{4}{x^2(x^2+4)}$$. __Find the partial fraction decomposition form__ $$\frac{4}{x^2(x^2+4)}=\frac{A}{x}+\frac{B}{x^2}+\frac{Cx+D}{x^2+4}$$ __Multiply both sides of the equation by the LCD__ $$Ax(x^2+4)+B(x^2+4)+(Cx+D)x^2=4$$ __Distribute and group like terms together__ $$Ax^3+4Ax+Bx^2+4B+Cx^3+Dx^2=4$$ $$Ax^3+Cx^3+Bx^2+Dx^2+4Ax+4B=4$$ $$(A+C)x^3+(B+D)x^2+(4A)x+4B=4$$ __Let $x=0$__ $$A(0)^3+D(0)^3+B(0)^2+D(0)^2+4A(0)+4B=4$$ $$4B=4 \implies B=1$$ __Let $x=2i$__ $$(A+C)(2i)^3+(1+D)(2i)^2+(4A)(2i)=0$$ $$(A+C)(-8i)+(1+D)(-4)+(4A)(2i)=0$$ $$-8Ai-8Ci-4-4D+8Ai=0$$ $$-8Ci-4D-4=0$$ __Solve for C & D through a system of linear equations__ $$-8Ci-4D=0i+4$$ $$-8Ci=0i \implies C=0$$ $$-4D=4 \implies D=-1$$ __Solve for A after plugging in B, C, & D__ $$Ax(x^2+4)+B(x^2+4)+(Cx+D)x^2=4$$ $$Ax(x^2+4)+x^2+4-x^2=4$$ $$Ax(x^2+4)=0 \implies A=0$$ A=0 B=1 C=0 D=-1 __Rewrite the partial fraction decomposition using values found for A, B, C, & D__ $$\frac{1}{x^2}+\frac{-1}{x^2+4}$$ ___ __Problem 2.__ For the function $$g(x)=\frac{1}{(x+1)^4(x^2+1)}$$ write the form of the partial fraction decomposition. __Do not find the full partial fraction decomposition__. $$\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{(x+1)^3}+\frac{D}{(x+1)^4}+\frac{Ex+F}{x^2+1}$$ ___ __Problem 3.__ For the function $$h(x)=\frac{x^7}{(x^4-16)^2}$$ write the form of the partial fraction decomposition. __Do not find the full partial fraction decomposition__. __Factor the denominator because it is not in the form of $(ax+b)^k$ or $(ax^2+bx+c)^k$__ $$\frac{x^7}{((x^2+4)(x^2-4))^2}=\frac{x^7}{((x^2+4)(x+2)(x-2))^2}=\frac{x^7}{(x^2+4)^2(x+2)^2(x-2)^2}$$ __Find the partial fraction decomposition__ $$\frac{A}{(x+2)}+\frac{B}{(x+2)^2}+\frac{C}{(x-2)}+\frac{D}{(x-2)^2}+\frac{Ex+F}{x^2+4}+\frac{Gx+H}{(x^2+4)^2}$$ ___ To submit this assignment click on the __Publish__ button. Then copy the url of the final document and submit it in Canvas.