Sid/Sahiti: March 22nd 2020 === ### Semidirect products - $(\alpha \equiv \{ a, b, \dots\}, +, 0)$ - $(\omega \equiv \{ X, Y, \dots\}, \times, 1)$ - $\cdot ~: ~\omega \rightarrow Automorphisms(\alpha)$ --- - [How to twist pointers without breaking them](https://www.cse.iitk.ac.in/users/ppk/research/publication/Conference/2016-09-22-How-to-twist-pointers.pdf) - rotations: $\mathbb Z 5$ - reflection: $\mathbb Z 2$ - $D_5 = \mathbb Z5 \rtimes \mathbb Z2$ --- \begin{align*} \begin{bmatrix} 1 & 0 \\ a & X \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & Y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a + X \cdot b & XY \end{bmatrix} \end{align*} - $(Y \mapsto b) \xrightarrow{act} (X \mapsto a)$ - $XY \mapsto a + X \cdot b$ ### A walkway of lanterns - Imagine $\mathbb Z$ as a long walkway. you start at 0. You are but a poor lamp lighter. - Where are the lamps? At each $i \in \mathbb Z$, you have a lamp that is either on, or off. So you have $\mathbb Z2$. - $L \equiv \mathbb Z \rightarrow \mathbb Z2$ is our space of lanterns. You can act on this space by either moving using $\mathbb Z$, or toggling a lamp using $\mathbb Z2$. $\mathbb Z2^{\mathbb Z} \rtimes \mathbb Z$ - $g = (lights:\langle-1, 0, 1\rangle, loc:10)$ - $move_3: (lights: \langle \rangle, loc: 3)$ - $move_3 \cdot g = (lights:\langle-1, 0, 1\rangle, loc:13)$ - $togglex = (lights:\langle 0, 2 \rangle, loc: 0)$ - $togglex \cdot g = (lights: \langle -1, 0, 1, 13, 15 \rangle, loc:13)$ - $toggley = (lights: \langle -13, -12 \rangle, loc:0)$ - $toggley\cdot g= (lights:\langle -1 \rangle, loc:13)$ ### Wreath products ### This is automata theoretic? :O - cascade finite automata. ### Krohn-rhodes, AKA how to model Freudian psychoanalysis using Lagrangians over semigroups. > [name=sahiti] tremendously titillating titling, truly tremor inducing