# Machine Learning ###### tags: `DLRM` ## 主旨 ![](https://i.imgur.com/O6aGa0I.png) ## Supervised Learning Supervised:"right answers" given 1. Regression:Predict continuous valued output 1. Classification:Discrete valued output (0 or 1) ### Linear Regression ![](https://i.imgur.com/02reJxf.png) ![](https://i.imgur.com/gPnGet1.png) ![](https://i.imgur.com/RFYlaJE.png) ![](https://i.imgur.com/Jr5bLDT.png) #### feature scaling and mean normalization We can speed up gradient descent by having each of our input values in roughly the same range. => xi=(xi−μi)/si (Where μi is the average of all the values for feature (i) and si is the range of values (max - min), or si is the standard deviation.) #### Gradient Descent ![](https://i.imgur.com/uMtyiX7.png) ![](https://i.imgur.com/y5HKIl6.jpg) ![](https://i.imgur.com/xhPHDWz.png) ![](https://i.imgur.com/xv77dcT.png) Declare convergence if J(θ) decreases by less than 10^-3 in one iteration ##### learning rate ![](https://i.imgur.com/hL9de6f.png) If α is too small: slow convergence. If α is too large:J(θ) may not decrease on every iteration;may not converge. #### Normal equation ![](https://i.imgur.com/7FJd8m7.png) ##### X and Y matrix ![](https://i.imgur.com/lIebYCd.png) ![](https://i.imgur.com/0dXleCK.png) ##### ![](https://i.imgur.com/mNjYL6C.png) 1. Redundant features (linearly dependent). 2. Too many features (e.g.m<=n). #### Gradient Descent v.s Normal equation ![](https://i.imgur.com/pap11MY.png) ### Classification ![](https://i.imgur.com/8BA19YK.png) ### Logistic regression ![](https://i.imgur.com/6Z750ZG.png) ![](https://i.imgur.com/vSQixIC.png) ![](https://i.imgur.com/6uEu5gs.png) #### boundary ![](https://i.imgur.com/H2OSJtf.png) ![](https://i.imgur.com/hHrhcQo.png) #### cost function ![](https://i.imgur.com/0vfKPcF.png) #### gradient descent ![](https://i.imgur.com/QrtJ0Ii.png) #### Advance optimization ![](https://i.imgur.com/P1MKOAg.png) #### One-vs-all ![](https://i.imgur.com/GikM7WL.png) ### underfitting and overfitting ![](https://i.imgur.com/73cLa1e.png) ![](https://i.imgur.com/ug8znb0.png) ![](https://i.imgur.com/cxmEVSO.png) #### regularization ##### linear regression ![](https://i.imgur.com/apmejQL.png) ![](https://i.imgur.com/PMVJJZA.png) ##### Normal equation ![](https://i.imgur.com/aoDBIxE.png) ![](https://i.imgur.com/xUx6bEm.png) ##### logistic regression ![](https://i.imgur.com/427V7dq.png) ![](https://i.imgur.com/fYu8HUj.png) ## Neuron Network ![](https://i.imgur.com/1JKbUFX.png) ![](https://i.imgur.com/Yu2DOT0.png) ![](https://i.imgur.com/jX9Ub4C.png) ![](https://i.imgur.com/YQUrOfd.png) ![](https://i.imgur.com/Yh6SLrS.png) ![](https://i.imgur.com/WZKgdV2.png) ![](https://i.imgur.com/YyGhsTN.png) ![](https://i.imgur.com/kPiAYBA.png) ![](https://i.imgur.com/7oQrh53.png) ![](https://i.imgur.com/I7bfFST.png) ### Backpropagation algorithm Forward propagation: ![](https://i.imgur.com/QgwHROc.png) Backpropagation: ![](https://i.imgur.com/VIsVbfs.png) ![](https://i.imgur.com/1ZPdN0O.png) 注意: ![](https://i.imgur.com/uHHrcGX.png) ### Gradient checking ![](https://i.imgur.com/Wq0oR2U.png) ### Random initialization ![](https://i.imgur.com/owmf8Gc.png) ### Training a neural network ![](https://i.imgur.com/IOBYb5w.png) ![](https://i.imgur.com/FChF8AT.png) ## Unsupervised Learning ![](https://i.imgur.com/rlGD5yR.png) ![](https://i.imgur.com/kvu11EE.png) ![](https://i.imgur.com/KXUj5RH.png)