--- title: "cpxa - TD 1 : " tags: cpxa, td --- {%hackmd theme-dark %} $$ \newcommand{\vt}[3]{ \begin{pmatrix} {#1} \\ {#2} \\ {#3} \end{pmatrix} } \newcommand{\limto}[1]{\xrightarrow[#1]{}} $$ # Complexité des algorithme - TD 1 : Subject ## Exercice 1.1 1) $\forall n \in \mathbb N^\star$ $$ \begin{align} S &= \sum_{i = 0}^{n - 1} \sum_{j = 1}^n 1 \\ S &= \sum_{i = 0}^{n - 1} n\\ S &= n^2\\ \end{align} $$ 2) $$ \begin{align} S &= \sum_{i = 0}^{n - 1} \sum_{j = 1}^{\lfloor n/2 \rfloor} 1 \\ S &= \sum_{i = 0}^{n - 1} \lfloor n/2 \rfloor \\ S &= n \lfloor n/2\rfloor \\ \end{align} $$ 3) $$ \begin{align} S &= \sum_{i = 0}^{n - 1} \sum_{j = 0}^i 1\\ S &= \sum_{i = 0}^{n - 1} i + 1\\ &\text{ nb de term}\times\text{(1ere term + dernier term)}\\ S &= \frac{n (1 + n)} 2 \end{align} $$ 4) changement de variable: $$ 1 \le j \le n - 1\\ 1 \le 2^k \le n - 1\\ \log_2(1) \le k \le \log_2(n - 1)\\ 0 \le k \le \lfloor\log_2(n - 1)\rfloor $$ $$ \begin{align} S &= \sum_{i = 0}^{n - 1} \sum_{j = \lfloor\log_2(1)\rfloor}^{\lfloor \log_2(n - 1)\rfloor} 1\\ S &= \sum_{i = 0}^{n - 1} \lfloor\log_2(n - 1)\rfloor - \lfloor\log_2(1)\rfloor + 1\\ S &= \sum_{i = 0}^{n - 1} \lfloor\log_2(n - 1)\rfloor + 1\\ S &= n (1 + \lfloor \log_2(n - 1) \rfloor) = n \lceil \log_2(n) \rceil\\ \end{align} $$ 5) $i$ pas jusqu'a $n - 1$ mais jusqua $n - 3$ car les dernier tours de boucle ne serve a rien (0 tous de la derniere boucle) $$ \begin{align} S &= \sum_{i = 0}^{n - 3} \sum_{j = i}^{n - 3} 1\\ S &= \sum_{i = 0}^{n - 3} (n - 3 - i + 1)\\ S &= \sum_{i = 0}^{n - 3} (n - i - 2)\\ S &= \frac{(n - 2)((n - 2) + 1)} 2\\ S &= \frac{(n - 2)(n - 1)} 2\\ \end{align} $$ 6) skip ## Exercice 1.2 $$ S = \sum_{y = 0}^{n - 1} S_1 + S_2\\ S = n \times( S_1 + S_2) $$ on as donc $$ S_1 = \sum_{x = n - y}^{n + y} 1\\ S_1 = 2y + 1 $$ et $$ S_2 = \sum_{x = 1}^{2n -1} = 2n - 1 $$ ce qui nous done $$ S = (n -1)(2n - 1) + n^2 $$ ## Exerice 1.3 1) $$ S = \sum_{i = 0}^{999} 2i + 1\\ S = \frac{1000 (1 + 1999)} 2 = 1\times 10^6 $$ 2) $$ \begin{align} 42 &= 10^{1.\dots}\\ 42 &= 10^1 \times 10^{0.\dots}\\ 4.2 &= 10^{0.\dots}\\ 4.2^{10} &= 10^{\dots.\dots}\\ 1 708 019 &= 10^{6.\dots}\\ 1.708 019 &= 10^{0.\dots}\\ 1.708 019^10 &= 10^{\dots}\\ 211.\dots &= 10^{2,\dots}\\ log_{10}(42) &\simeq 1,62\\ \end{align} $$ ## Exercice 1.4
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up