# QSVM [Hackmd Fast Tutorial](https://hackmd.io/c/tutorials-tw/%2Fs%2Fquick-start-tw) ## Paper * [Enhancing Quantum Support Vector Machines through Variational Kernel Training](https://arxiv.org/pdf/2305.06063.pdf) ## Dataset ## Method ## Result ### Classical #### PCA + Linear * MSE | | Training | Testing | | -------- | -------- | -------- | | C | 0.00024 | 0.00020 * Fitting Figure | C-Training | C-Testing | | -------- | -------- | | |  | ### IBM # Quera ## PCA + Simple Encoding + Tuning * Dataset * output06_24.csv * MSE | | Training | Testing | | -------- | -------- | -------- | | Q | 4e-8 | 0.00017 | | C | 0.00024|0.00020 * Fitting Figure | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | |  |  | ## PCA + Chain + Tuning ### Case1 * Dataset * output08_21_BSBM.csv * train : 180 * test : 60 * Fitting Figure | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | |  |  | ### Case2 * Dataset * output08_21_BSBM.csv * train : 500 * test : 150 * Fitting Figure - epsilon = 0 | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | |  || * Fitting Figure - tuned | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | |  || * Fitting Figure - tuned | C-Training | C-Test | | --------------------------------------------- | --------------------------------------------- | |  || * Q-Kernel Matrix  * C-Kernel Matrix  ## Chain + Tuning (1009) ### Case1 - 700 data * Dataset * output08_21_BSBM.csv * train : 700 * test : 210 * epsilon : 0.022 * C : 0.1 * $V_{ij}t=\pi$ * Fitting Figure - epsilon = 0 | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Fitting Figure - tuned | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | || * Fitting Figure - tuned | C-Training | C-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Q-Kernel Matrix  * C-Kernel Matrix  ### Case2 - 500 data * Dataset * output08_21_BSBM.csv * train : 700 * test : 210 * epsilon : 0.019 * C : 0.1 * $V_{ij}t=\pi$ * Fitting Figure - tuned | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Fitting Figure - tuned | C-Training | C-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Q-Kernel Matrix  * C-Kernel Matrix  # Case3 - 100 data * Dataset * output08_21_BSBM.csv * train : 100 * test : 30 * **epsilon : 0.008** * C : 0.1 * $V_{ij}t=\pi$ * MSE | | Training | Testing | | -------- | -------- | -------- | | Q | 5.5e-5 | 0.00014 | | C |1.2e-5 |0.00011 | * Fitting Figure - epsilon = 0 | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Fitting Figure - tuned | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Fitting Figure - tuned | C-Training | C-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Q-Kernel Matrix  * C-Kernel Matrix  # Sample * Dataset * output08_21_BSBM.csv * train : 700 * test : 210 * epsilon : 0.019 * C : 0.1 * $V_{ij}t=\pi$ * MSE | | Training | Testing | | -------- | -------- | -------- | | Q | | | | C | | * Fitting Figure - epsilon = 0 | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | | | * Fitting Figure - tuned | Q-Training | Q-Test | | --------------------------------------------- | --------------------------------------------- | | || * Fitting Figure - tuned | C-Training | C-Test | | --------------------------------------------- | --------------------------------------------- | | || * Q-Kernel Matrix * C-Kernel Matrix
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up