# Useful Resource ## Quantum Machine Learning ### Video * [Qfort-An Introduction to Quantum Machine Learning](https://www.youtube.com/watch?v=Js4O9k3m0ZY) * [Quantum Neural Network - Kerstin Beer](https://www.youtube.com/watch?v=HfmmZregVDU) ### Paper * [Supervised learning with quantum-enhanced feature spaces](https://www.nature.com/articles/s41586-019-0980-2) * [Quantum Support Vector Machines for Continuum Suppression in B Meson Decays](https://link.springer.com/article/10.1007/s41781-021-00075-x) * [_Kernel-based quantum regressor models learning non-Markovianity] * [Experimental kernel-based quantum machine learning in finite feature space](https://www.nature.com/articles/s41598-020-68911-5) * [Estimating the degree of non-Markovianity using machine learning](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.022425) * [Investigation of Quantum Support Vector Machine for Classification in NISQ era](https://arxiv.org/pdf/2112.06912.pdf) ### Website ## Quantum Annealing ### Video * [Qfort-Solving NP-hard Problems with Quantum Annealing](https://www.youtube.com/watch?v=7CpdhL7GcD4) ### Paper ### Website ## Quantum Computing ### Video ### Paper * [QAOA](https://arxiv.org/pdf/1411.4028.pdf) ### Website * [Algorithm Zoo](https://quantumalgorithmzoo.org/) ## Quanutum Open System ### Paper * [Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.210401)