--- disqus: ierosodin --- # Eigenvalues and Eigenvectors > Organization contact [name= [ierosodin](ierosodin@gmail.com)] ###### tags: `Linear Algebra` `學習筆記` * $Ax = \lambda x$, where $A$ is a square matrix * $\lambda$: eigenvalue * $x$: eigenvector * $(A - \lambda I)x = 0$ * $(A - \lambda I)$ must be singular $\Rightarrow det(A - \lambda I) = 0$ * eigenvectors are in the $N(A - \lambda I)$ * $A^2x = \lambda^2x$, $A^k = \lambda^kx$, $A^{-1} = \lambda^{-1}x$ (provided $\lambda \neq 0$) * Example: $S = {\left[ \begin{array}{cc} 2 & 1 \\ 1 & 2\\ \end{array} \right]} {\left[ \begin{array}{cc} a & b \\ c & d\\ \end{array} \right]}$ * Find eigenvalue by solving $det(A - \lambda I) = 0$ * $\lambda = \frac{1}{2}\left[a + d\pm \sqrt{(a-d)^2 + 4bc}\right]$ * $\lambda_1 + \lambda_2 = a + d$ = trace of $S$, and $det(A) = \lambda_1\lambda_2$ * so $\lambda = 1, 3$, and eigenvectors $= {\left[ \begin{array}{c} 1 \\ 1 \\ \end{array} \right]}, {\left[ \begin{array}{c} 1 \\ -1 \\ \end{array} \right]}$ * Symmetric matrices always have real eigenvalues * Orthogonal eigenvecctors if $\lambda_1 \neq \lambda_2$ * $S$ is symmetric, and $x$ and $y$ are eigenvectors of $S$ corresponding to distinct eigenvalues $\lambda_1$ and $\lambda_2$. * $\lambda_1 x^Ty = (\lambda_1 x^T)y = (Ax)^Ty = x^T(A^Ty) = x^T(Ay) = x^T(\lambda_2 y) = \lambda_2 x^Ty$ * $\Rightarrow (\lambda - \mu) x^Ty = 0$ * 因為 $\lambda_1 \neq \lambda_2$, $x^Ty = 0$ * Number of nonzero eigenvalue must be smaller than rank of $A$ * 由於 rank of $N(C^T) =$ n - r,所以有 n - r 個 eigenvectors,其 eigenvalues 皆為零,而這些 n - r 個 eigenvectors 為一個 $R^{n - r}$ 的空間。 * Similar matrices * 對於每個可逆矩陣 $B$,$BAB^{-1}$ 與 $A$ 擁有相同的 eigenvalues。 * For $Ax = \lambda x$, $(BAB^{-1})(Bx) = \lambda(Bx)$ * Side track * $AB$ 與 $BA$ 有相同的 non-zero eigenvalues * $ABx = \lambda x \Rightarrow BA(Bx) = \lambda (Bx)$ * $Bx$ 為 $BA$ 的 eigenvectors * Diagonalizing a matrix * 假設 $A$ 是一個 $n\times n$ 矩陣,並且有 $n$ 個線性獨立的 eigenvectors, $x_1, x_2, ..., x_n$ * $A$ has a full set of n independent eigenvectors * $A{\left[ \begin{array}{cccc} x_1 & x_2 & ... x_n \\ \end{array} \right]} = {\left[ \begin{array}{cccc} \lambda_1x_1 & \lambda_2x_2 & ... \lambda_nx_n \\ \end{array} \right]} \\ = {\left[ \begin{array}{cccc} x_1 & x_2 & ... x_n \\ \end{array} \right]} {\left[ \begin{array}{cccc} \lambda_1 \\ & \lambda_2 \\ & & ... \\ & & & \lambda_n \\ \end{array} \right]} = X\Lambda$ * $\begin{split}AX = X\Lambda &\Rightarrow A = X\Lambda X^{-1} \\ &\Rightarrow A^k = X\Lambda^KX^{-1} \end{split}$ * $A^kv = X\Lambda^kX^{-1}v$ * Assuming $v = c_1x_1 + c_2x_2 + ... + c_nx_n \\ \Rightarrow v = {\left[ \begin{array}{cccc} x_1 & x_2 & ... x_n \\ \end{array} \right]} {\left[ \begin{array}{c} c_1 \\ c_2 \\ ... \\ c_n \\ \end{array} \right]} = Xc \\ \begin{split}\Rightarrow A^kv &= X\Lambda^kX^{-1}v = X\Lambda^kc \\ &= X{\left[ \begin{array}{cccc} c\lambda_1^k \\ & c\lambda_2^k \\ & & ... \\ & & & c\lambda_n^k \\ \end{array} \right]} \\ &= c_1\lambda_1^kx_1 + c_2\lambda_2^kx_2 + ... + c_n\lambda_nx_n\end{split}$ * Nondiagonalizable matrices * 有重複的 egienvalues * GM * Geometric multiplicity * 計算 $N(A - \lambda I)$ * AM * Algebratic multiplicity * 計算有多少個不同的 eigenvalues * GM < AM * $A = {\left[ \begin{array}{cc} 5 & 1 \\ 0 & 5 \\ \end{array} \right]}$, AM = 2, GM = 1 * Matrix A with 0 eigenvalue is not invertible * Suppose $A$ is square matrix and invertible and, for the sake of contradiction, let 0 be an eigenvalue. Consider, $(A - \lambda I) \cdot v = 0$ with $\lambda = 0$ * $\Rightarrow (A - 0\cdot I)v = 0 \\ \Rightarrow(A - 0)v = 0 \\ \Rightarrow Av = 0$ * We know $A$ is an invertible and in order for $Av = 0 \Rightarrow v = 0$, but $v$ must be non-trivial such that $\det(A - \lambda I) = 0$. * Here lies our contradiction. Hence, 0 cannot be an eigenvalue. * Suppose $A$ is square matrix and has an eigenvalue of 0. For the sake of contradiction, lets assume $A$ is invertible. * Consider, $Av = \lambda v$, with $\lambda = 0$ means there exists a non-zero $v$ such that $Av = 0$. This implies $Av = 0v \Rightarrow Av = 0$ * For an invertible matrix $A$, $Av = 0$ implies $v = 0$. So, $Av = 0 = A\cdot 0$. * Since $v$ cannot be 0, this means $A$ must not have been one-to-one. * Hence, our contradiction, $A$ must not be invertible.