--- disqus: ierosodin --- # Probability distribution > Organization contact [name= [ierosodin](ierosodin@gmail.com)] ###### tags: `machine learning` `學習筆記` ==[Back to Catalog](https://hackmd.io/@ierosodin/Machine_Learning)== ## Bernoulli distribution 當 sample space 只有兩種 outcome 時,其機率分佈可以用 bernoulli distribution 來模擬。 假設 ${D\ =\ \{x_1,x_2,x_3,...,x_n\}}$ 為的試驗結果,則其 likelihood 為 ${P(D|\theta=p)}$ 想要找 MLE,即為找出 ${max\prod_{i=1}^Np^{x_i}(1-p)^{(1-x_i)}}$ 由於相乘找極值較難,我們可以對其取 ${log}$,因為 ${log}$ 為嚴格遞增函數,因此其 ${arg max}$ 不變。 ${\begin{split} log\prod_{i=1}^Np^{x_i}(1-p)^{(1-x_i)}\ &=\ \sum_{i=1}^Nlog(p^{x_i}(1-p)^{(1-x_i)}) \\ &=\ \sum_{i=1}^Nx_ilog(p)\ +\ \sum_{i=1}^N(1-x_i)log(1-p) \end{split}}$ 對其微分, ${\begin{split} &\frac{d}{dp}\ =\ 0 \\ &\Rightarrow\ \sum_{i=1}^Nx_i\frac{1}{p} \ -\ \sum_{i=1}^N(1-x_i)\frac{1}{1-p}\ =\ 0 \\ &\Rightarrow\ (1-p)\sum_{i=1}^Nx_i\ =\ p(N\ -\ \sum_{i=1}^Nx_i) \\ &\Rightarrow\ p\ =\ \frac{\sum_{i=1}^Nx_i}{N}\ =\ \frac{成功次數}{總次數} \end{split}}$ ## Binomial distribution binomial distribution 即為對 bernoulli 做 N 次試驗: ${P(X=m|p,N\ =\ {\left(\begin{array}{c} N \\ m \\ \end{array}\right)}p^m(1-p)^{(N-m)})}$ 其中,${X}$ 為 random variable,代表試驗 N 次中,正確的次數,例如擲到正面的次數。 其 mean 與 variance 皆為 bernoulli distribution 的 N 倍: ${E(X)\ =\ Np \\ Var(X)\ ==\ Npq}$ 而 MLE 仍為 ${\frac{m}{N}}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up