## 考題 [NCKU_CS_Math112](https://drive.google.com/file/d/1VzhM8lTBSerMHNJZkjUlIt6wGTSEWINI/view?usp=drive_link) ## 1. Fix the second digital : $1X1\text{~}~9X9$ Sum : $\frac{9(101+909)}{2}=4545$ Since $X$ from 0 to 9, the sum of this part is 45450 Fix the first and third digital : $X0X\text{~}X9X$ Sum : $\frac{9(10+90)}{2}=450$ Since $X$ from 1 to 9, this part is 4050 Thus, the total sum is 49500. ## 2. Generating function $f(x)=1+x+x^2+\cdots+x^n$ ## 3. The number of bijection function Answer : $n!$ ## 4. Recursive Relation $x^2-5x+6=0\implies (x-2)(x-3)=0$ Thus, $a_n^{(h)}=c_02^n+c_13^n$ and $a^{(p)}_n=d_0$ Put the particular solution into original equation : $d_0-5d_0+6d_0=2\implies d_0=1$ Thus, $a_n=a_n^{(h)}+a^{(p)}_n=c_02^n+c_13^n+1$ Put $a_0$ and $a_1$ into equation : $c_0=1, c_1=2$ Thus , $a_n=2\cdot3^n+1$ ## 5. Number Theory Assume $2a+3b=17k$, for some $k\in \mathbb{Z}$ Assume the statement is False. $\implies \exists s\in \mathbb{N}$ with $s<17$ such that $9a+5b=17q+s$ Thus, $(9a+5b)-(2a+3b)=17(q-s)+s=7a+2b$ $\implies 21a+6b=17(3(q-k))+3s$ Since $17$ is prime and $~3\not\mid17~\land s\not\mid17$, $3s\not\mid17$. $\implies 17\not\mid 21a+6b$ On the other hands, $4a+6b=17(2k)$ $\implies 21a+6b-(4a+6b)=17a=17(3(q-k)-2k)+3s$ It's a contradiction. Thus, the statement is true. ## 6. Coordinate Vector Slove $w=(8,-4,-12)=a(1,1,1)+b(1,5,-3)+c(2,2,1)$ with $B=(1,1,1),(1,5,-3),(2,2,1)$ $\implies[w]_B=[-53,-3,32]$ ## 7. Orthonormal Basis $x=\frac{<x,u_1>}{\lVert u_1 \rVert^2}u_1+\frac{<x,u_1>}{\lVert u_2 \rVert^2}u_2+\frac{<x,u_3>}{\lVert u_3 \rVert^2}u_1=4u_1+0+<x,u_3>u_3$ $\implies \lVert x \rVert=5=\sqrt{16+(<x,u_3>)^2}$ Thus, $<x,u_3>=\pm 3$ Finally, we have $c_1=4,c_2=0,c_3=\pm3$ ## 8. Dimension Theory ### a. By Dimension Theory, $Rank(A)+Nullity(A)=7$. Thus, $Nullity(A)=3$. ### b. No. Since $b$ is combination of Columns of $A$ and $dim(Col(A))=4<5$, $\exists b\not\in Col(A)$ such that $Ax=b$ has no solution. ## 9. Eigenvalue $det(A)=p(0)=1(-2)^2(3)^2=36$ Thus, $det(A^{-1})=\frac{1}{36}$ ## 10. True or False ### a. Singular and Eigenvalue True. $det(A)=\displaystyle\prod^n_{i=1}\lambda_i\not=0$ Thus, $A$ is nonsingular. ### b. Diagonalizable True. $Rank(A)=1\implies Nullity(A)=4=dim(E(0))$ $\implies am(0)=gm(0)$ ### c. Determinant False. Row exchange is forbidden. ### d. Invertible False. $A$ is invertible $\implies Rank(A)=n=Rank(A^T)$