# Probability HW4-2 ###### tags: `Probability` - [name=0716023 曾文鼎] ## 4a 以下求 $c$ $$\begin{align} \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)~\mathrm dx\mathrm dy &= \int_{0}^{\infty} Ce^{-x}\cdot2x\mathrm dx \\ &= \left[-2c(x+1)e^{-x}\right]^{\infty}_{0} \\ &= 2c\displaystyle \\ &= 1 \end{align}$$ 故 $c=0.5$ ## 4b 當 $x$ 為常數時 $f(x,y)=Ce^{-x}$ 也是常數,所以 $f_Y(y)$ 在 $y\in(-x,x)$ 均勻分布。故 $$f_{Y|X}(y|x)=\begin{equation}\begin{cases} \dfrac{1}{x-(-x)}=\dfrac{1}{2x}, & \text{if}~x\geq0, -x<y<x \\ 0, & \text{else} \end{cases}\end{equation}$$ 以下計算 $f_Y(y)$ $$\begin{align}f_Y(y) &= \int_{-\infty}^{\infty}f(x,y)~\mathrm dx \\ &= \int_{|y|}^{\infty} \frac 1 2 e^{-x}\mathrm dx \\ &= \left[\frac{-e^{-x}}{2}\right]^{\infty}_{|y|} \\ &= \frac{e^{-|y|}}{2} \end{align}$$ 故 $$f_{X|Y}(x|y)=\begin{equation}\begin{cases} \dfrac{f(x,y)}{f_Y(y)}=\dfrac{e^{-x}/2}{e^{-|y|}/2}=e^{|y|-x}, & \text{if}~ x\geq0, |y|<x \\ 0, & \text{else} \end{cases}\end{equation}$$ ## 4c 因為上下對稱,故 $E[Y|X=x]=0$ 。 ## 5 假定這是 Bivartie normal distribution , 則可以列出 $$\begin{equation}\begin{cases} c=\dfrac{1}{2 \pi \sigma_X \sigma_Y \sqrt{1-\rho^2}} \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{(x-\mu_X)^2}{{\sigma_X}^2}=-8x^2 \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{(y-\mu_Y)^2}{{\sigma_Y}^2}=-18y^2 \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{-2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}=-6xy \\ \end{cases}\end{equation}$$ 經觀察,顯然 * $\mu_x=0$ * $\mu_y=0$ 因此 $$\begin{equation}\begin{cases} \dfrac{-1}{2(1-\rho^2)}\dfrac{x^2}{{\sigma_X}^2}=-8x^2 & \implies & \dfrac{-1}{2(1-\rho^2)}\dfrac{1}{{\sigma_X}^2}=-8 \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{y^2}{{\sigma_Y}^2}=-18y^2 & \implies & \dfrac{-1}{2(1-\rho^2)}\dfrac{1}{{\sigma_Y}^2}=-18 \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{-2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}=-6xy & \implies & \dfrac{-1}{2(1-\rho^2)}\dfrac{-2\rho}{\sigma_X\sigma_Y}=-6 \end{cases}\end{equation}$$ 由上式除以中式計算得出 $\dfrac{{\sigma_Y}^2}{{\sigma_X}^2}=\dfrac{-8}{-18}\implies\sigma_X=\dfrac 3 2\sigma_Y$ ,因此 $\dfrac{-1}{2(1-\rho^2)}\dfrac{-2\rho}{\frac 3 2{\sigma_Y}^2}=-6$ 。再將此結果與中式聯立,得到 $$ \begin{equation}\begin{cases} \dfrac{-1}{2(1-\rho^2)}\dfrac{1}{{\sigma_Y}^2}=-18 \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{-2\rho}{\frac 3 2{\sigma_Y}^2}=-6 \end{cases} \implies \dfrac{-2\rho}{3/2}=\frac 1 3 \end{equation}$$ 因此 * $\rho=\dfrac{-1}{4}$ 將 $\rho$ 代回 $\begin{equation}\begin{cases} \dfrac{-1}{2(1-\rho^2)}\dfrac{1}{{\sigma_X}^2}=-8 \\ \dfrac{-1}{2(1-\rho^2)}\dfrac{1}{{\sigma_Y}^2}=-18 \end{cases}\end{equation}$ 得到 * $\sigma_X=\dfrac{1}{\sqrt{15}}$ * $\sigma_Y=\dfrac{2}{3\sqrt{15}}$ 因此 * $c=\dfrac{1}{2 \pi \sigma_X \sigma_Y \sqrt{1-\rho^2}}=\dfrac{\sqrt{135}}{\pi}$