[TOC] # Weighting Components of Flavanoles of Tea ## 1. General Model for Taiwanese oolong tea flavor 1. $X_i$ is the ***true*** flavanoles of Tea 2. $W_i$ is the flavanoles assay measure from ***UV*** device 3. $M_i$ is the flavanoles assay measure from ***ECD*** device 4. $R_i$ is the flavanoles assay measure from ***MS*** device **Assumptions:** * $W=X+\epsilon$ where $E(\epsilon|X=x)=0$ and $Var(W|X=x)=\sigma_x^2+\sigma^2_\epsilon$ * $M=X+\xi$ where $E(\xi|X=x)=0$ and $Var(M|X=x)=\sigma_x^2+\sigma^2_\xi$ * $R=X+\eta$ where $E(\eta|X=x)=0$ and $Var(R|X=x)=\sigma_x^2+\sigma^2_\eta$ * $\epsilon$, $\xi$ and $\eta$ are independent. ## 2. Method of Moment **The MM of $\mu_X$, $\sigma^2_X$, $\sigma^2_\epsilon$, $\sigma^2_\xi$, $\sigma^2_\eta$** $E(\frac{W+M+R}{3}|X=x)=\mu_x$ * $E(WM|X=x)=\sigma^2_x+\mu^2_x$ $E(WM|X=x)=E[(X+\epsilon)(X+\xi)|X=x]=E(X^2+X\epsilon+X\xi+\epsilon\xi|X=x)=\sigma^2_x+\mu^2_x$ * $E(WR|X=x)=\sigma^2_x+\mu^2_x$ $E(WR|X=x)=E[(X+\epsilon)(X+\eta)|X=x]=E(X^2+X\epsilon+X\eta+\epsilon\eta|X=x)=\sigma^2_x+\mu^2_x$ * $E(MR|X=x)=\sigma^2_x+\mu^2_x$ $E(MR|X=x)=E[(X+\xi)(X+\eta)|X=x]=E(X^2+X\xi+X\eta+\xi\eta|X=x)=\sigma^2_x+\mu^2_x$ $E(\frac{WM+WR+MR}{3}|X=x)=\sigma^2_x-\mu^2_x$ **$\sigma^2_x$, $\sigma^2_\epsilon$, $\sigma^2_\xi$, and $\sigma^2_\eta$** are (1) $\sigma^2_x=E(\frac{WM+WR+MR}{3})-[E(\frac{W+M+R}{3})]^2$ (2) $\sigma^2_\epsilon=Var(W)-\sigma^2_x$ (3) $\sigma^2_\xi=Var(M)-\sigma^2_x$ (4) $\sigma^2_\eta=Var(R)-\sigma^2_x$ **The estimator of $\sigma^2_x$, $\sigma^2_\epsilon$, $\sigma_\xi$, $\sigma_\eta$:** \begin{align*} \hat\sigma^2_x&=\frac{\sum_{i=1}^n(w_im_iM+w_ir_i+m_ir_i)}{3(n-1)}-[\frac{\sum_{i=1}^n(w_i+m_i+r_i)}{3n}]^2 \\ \hat\sigma^2_\epsilon&=\frac{\sum_{i=1}^n(w_i-\bar{w})^2}{n-1}-\hat\sigma^2_x \\ \hat\sigma^2_\xi&=\frac{\sum_{i=1}^n(m_i-\bar{m})^2}{n-1}-\hat\sigma^2_x \\ \hat\sigma^2_\eta&=\frac{\sum_{i=1}^n(r_i-\bar{r})^2}{n-1}-\hat\sigma^2_x \end{align*} --- ## 3. Weighted method If \begin{align*} W & \sim F(\mu_x, \sigma^2_W) \\ M & \sim F(\mu_x, \sigma^2_M) \\ R & \sim F(\mu_x, \sigma^2_R) \end{align*} and $U=\omega_1 W+\omega_2 M+ (1-\omega_1-\omega_2) R$, then find $\omega_1$ and $\omega_2$ subject to $\min_{\omega_1, \omega_2}Var(U)$. **Proof** \begin{align*} Var(U) &=Var(\omega_1 W+\omega_2 M+(1-\omega_1-\omega_2) R)\\ &=\omega^2_1Var(W)+\omega^2_2Var(M)+(1-\omega_1-\omega_2)^2Var(R)\\ &=\omega^2_1 \sigma^2_W+\omega^2_2 \sigma^2_M+(1-\omega_1-\omega_2)^2\sigma^2_R \end{align*} Partial derivative with $\omega_1$ and $\omega_2$, then \begin{align*} &\left\{ \begin{array}{l} \frac{\partial}{\partial \omega_1}Var(U)=2\omega_1\sigma^2_W-2(1-\omega_1-\omega_2)\sigma^2_R=0\\ \frac{\partial}{\partial \omega_2}Var(U)=2\omega_2\sigma^2_M-2(1-\omega_1-\omega_2)\sigma^2_R=0\\ \end{array} \right. \\ \Rightarrow &\left\{ \begin{array}{l} \omega_1 (\sigma^2_W+\sigma^2_M)=(1-\omega_2)\sigma^2_R\\ \omega_2 (\sigma^2_M+\sigma^2_R)=(1-\omega_1)\sigma^2_R\\ \end{array} \right. \end{align*} The solution of $\omega_1$ and $\omega_2$ are \begin{align*} \omega_1&=\frac{\sigma^2_M\sigma^2_R}{\sigma^2_W\sigma^2_M+\sigma^2_W\sigma^2_R+\sigma^2_M\sigma^2_R} \\ \omega_2&=\frac{\sigma^2_W\sigma^2_R}{\sigma^2_W\sigma^2_M+\sigma^2_W\sigma^2_R+\sigma^2_M\sigma^2_R} \end{align*} then $$1-\omega_1-\omega_2=\frac{\sigma^2_W\sigma^2_M}{\sigma^2_W\sigma^2_M+\sigma^2_W\sigma^2_R+\sigma^2_M\sigma^2_R}.$$ Let $$T=\sigma^2_W\sigma^2_M+\sigma^2_W\sigma^2_R+\sigma^2_M\sigma^2_R,$$ then \begin{align} U&=\frac{\sigma^2_M\sigma^2_R}{T} W+\frac{\sigma^2_W\sigma^2_R}{T} M+ \frac{\sigma^2_W\sigma^2_M}{T} R \\ Var(U)&=\frac{\sigma^2_W\sigma^2_M\sigma^2_R}{T} \end{align} --- ## 4. Linear Model 1. **UV:** $W=f(X)=\alpha_0+\alpha_1 X+\epsilon,$ $\quad$ $\epsilon \sim N(0,\sigma^2_{\epsilon})$ 2. **ECD:** $M=g(X)=\beta_0+\beta_1 X+\xi,$ $\quad$ $\xi \sim N(0,\sigma^2_\xi)$ 3. **MS:** $R=h(X)=\gamma_0+\gamma_1X+\eta,$ $\quad$ $\eta\sim N(0,\sigma^2_\eta)$ Let \begin{align} U&=\omega_1 W+\omega_2 M+(1-\omega_1-\omega_2)R \\ &=\{ \omega_1 \alpha_0+\omega_2 \beta_0+(1-\omega_1-\omega_2) \gamma_0 \}+ \{ \omega_1\alpha_1+\omega_2\beta_1+(1-\omega_1-\omega_2)\gamma_1\}X \\ &\quad +\omega_1\epsilon+\omega_2\xi+(1-\omega_1-\omega_2)\eta \end{align} Then \begin{align} E(U|X=x)&=\{ \omega_1 \alpha_0+\omega_2 \beta_0+(1-\omega_1-\omega_2) \gamma_0 \}+ \{ \omega_1\alpha_1+\omega_2\beta_1+(1-\omega_1-\omega_2)\gamma_1\}x \\ &=x \end{align} \begin{align*} \Rightarrow\left\{ \begin{array}{l} \omega_1 \alpha_0+\omega_2\beta_0+(1-\omega_1-\omega_2)\gamma_0=0\\ \omega_1 \alpha_1+\omega_2\beta_1+(1-\omega_1-\omega_2)\gamma_1=1 \end{array} \right. \end{align*} We can find the weight $\omega_1$ and $\omega_2$ \begin{align*} &\min_{\omega_1, \omega_2} Var(U)=\min_{\omega_1,\omega_2}\{ [ \omega_1 \alpha_1+\omega_2\beta_1+(1-\omega_1-\omega_2)\gamma_1 ]^2 \sigma^2_x+\omega^2_1\sigma^2_\epsilon+\omega^2_1\sigma^2_\xi+(1-\omega_1-\omega_2)^2\sigma^2_\eta \} \end{align*} \begin{align*} &\Rightarrow\left\{ \begin{array}{l} \frac{\partial}{\partial \omega_1}Var(U)=[\omega_1 \alpha_1+\omega_2\beta_1+(1-\omega_1-\omega_2)\gamma_1](\alpha_1-\gamma_1)\sigma^2_x+ \omega_1\sigma^2_\epsilon-(1-\omega_1-\omega_2)\sigma^2_\eta=0\\ \frac{\partial}{\partial \omega_2}Var(U)=[\omega_1 \alpha_1+\omega_2\beta_1+(1-\omega_1-\omega_2)\gamma_1](\beta_1-\gamma_1)\sigma^2_x+ \omega_2\sigma^2_\xi-(1-\omega_1-\omega_2)\sigma^2_\eta=0 \end{array} \right. \\ \\ &\Rightarrow\left\{ \begin{array}{l} (\alpha_1-\gamma_1)\sigma^2_x+\omega_1\sigma^2_\epsilon=(1-\omega_1-\omega_2)\sigma^2_\eta \\ (\beta_1-\gamma_1)\sigma^2_x+\omega_1\sigma^2_\xi=(1-\omega_1-\omega_2)\sigma^2_\eta \end{array} \right. \end{align*} **Part 1.** To solve $\omega_1$ Let $$\omega_2=\frac{(1-\omega_1)\sigma^2_\eta+(\gamma_1-\beta_1)\sigma^2_x}{\sigma^2_\xi+\sigma^2_\eta}$$ and $$1-\omega_2=\frac{\sigma^2_\xi+\omega_1\sigma^2_\eta+(\gamma_1-\beta_1)\sigma^2_x}{\sigma^2_\xi+\sigma^2_\eta}$$ Then \begin{align} &\omega_1(\sigma^2_\epsilon+\sigma^2_\eta)=\frac{\sigma^2_\xi+\omega_1\sigma^2_\eta+(\gamma_1-\beta_1)\sigma^2_x}{\sigma^2_\xi+\sigma^2_\eta}\sigma^2_\eta+(\gamma_1-\alpha_1)\sigma^2_x\\ \\ \Rightarrow &\omega_1( \sigma^2_\epsilon \sigma^2_\xi+ \sigma^2_\epsilon \sigma^2_\eta+\sigma^2_\xi\sigma^2_\eta) =\sigma^2_\xi \sigma^2_\eta+(\beta_1-\alpha_1) \sigma^2_x \sigma^2_\eta+(\gamma_1-\alpha_1)\sigma^2_x \sigma^2_\xi\\ \\ \Rightarrow &\omega_1=\frac{\sigma^2_\xi \sigma^2_\eta+(\beta_1-\alpha_1) \sigma^2_x \sigma^2_\eta+(\gamma_1-\alpha_1)\sigma^2_x \sigma^2_\xi}{\sigma^2_\epsilon \sigma^2_\xi+ \sigma^2_\epsilon \sigma^2_\eta+\sigma^2_\xi\sigma^2_\eta} \end{align} **Part 2.** To solve $\omega_2$ Let $$\omega_1=\frac{(1-\omega_2)\sigma^2_\eta+(\gamma_1-\alpha_1)\sigma^2_x}{\sigma^2_\epsilon+\sigma^2_\eta}$$ and $$1-\omega_1=\frac{\sigma^2_\epsilon+\omega_2\sigma^2_\eta+(\alpha_1-\gamma_1)\sigma^2_x}{\sigma^2_\epsilon+\sigma^2_\eta}$$ Then \begin{align} &\omega_2(\sigma^2_\xi+\sigma^2_\eta)=\frac{\sigma^2_\epsilon+\omega_2\sigma^2_\eta+(\alpha_1-\gamma_1)\sigma^2_x}{\sigma^2_\epsilon+\sigma^2_\eta}\sigma^2_\eta+(\gamma_1-\beta_1)\sigma^2_x\\ \\ \Rightarrow &\omega_2( \sigma^2_\epsilon \sigma^2_\xi+ \sigma^2_\epsilon \sigma^2_\eta+\sigma^2_\xi\sigma^2_\eta) =\sigma^2_\epsilon \sigma^2_\eta+(\alpha_1-\beta_1) \sigma^2_x \sigma^2_\eta+(\gamma_1-\beta_1)\sigma^2_x \sigma^2_\epsilon\\ \\ \Rightarrow &\omega_2=\frac{\sigma^2_\epsilon \sigma^2_\eta+(\alpha_1-\beta_1) \sigma^2_x \sigma^2_\eta+(\gamma_1-\beta_1)\sigma^2_x \sigma^2_\epsilon}{\sigma^2_\epsilon \sigma^2_\xi+ \sigma^2_\epsilon \sigma^2_\eta+\sigma^2_\xi\sigma^2_\eta} \end{align} **Part 3.** To solve $1-\omega_1-\omega_2$ \begin{align} 1-\omega_1-\omega_2=\frac{\sigma^2_\epsilon \sigma^2_\xi+(\alpha_1-\gamma_1) \sigma^2_x \sigma^2_\xi+(\beta_1-\gamma_1)\sigma^2_x \sigma^2_\epsilon}{\sigma^2_\epsilon \sigma^2_\xi+ \sigma^2_\epsilon \sigma^2_\eta+\sigma^2_\xi\sigma^2_\eta} \end{align} ###### tags: `Chemometric authentication of Taiwanese oolong tea flavor`