---
title: MS6
tags: teach:MS
---
# 6. Distributions derived from the normal distribution
:::info
### Links to Statistics 101
Suppose the population has a distribution, $F(\theta)$, we learn how to estimate the parameter $\theta$ and how well it is using the following two approaches:
1. Confidence interval
2. Hypothesis testing
- $Z$-test: means, population proportion
- $t$-test: means
- $\chi^2$-test: variance
- $F$-test: variance, ANOVA
### The $Z$-test for population mean
Suppose the population has a distribution $F(\mu, \sigma^2)$, where $F$ can be any distribution.
- $H_0:\mu=\mu_0$ versus $H_1:\mu \neq \mu_0$.
- The $Z$ statistic is $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\stackrel{d}{\rightarrow} Z$.
- Set $\alpha=0.05$.
- Realized $Z$-statistic = $Z^*$.
- The p-value is $P(Z > |Z^*|)$.
- If p-value $<\alpha$, we reject $H_0$ and conclude that $\mu\neq \mu_0$. Otherwise, we accept $H_0$.
### The $t$-test for population mean
Suppose the population has a normal distribution.
- $H_0:\mu=\mu_0$ versus $H_1:\mu \neq \mu_0$.
- The $t$ statistic is $\frac{\bar{X}-\mu_0}{S/\sqrt{n}}\sim t_{n-1}$.
- Set $\alpha=0.05$.
- Realized $t$-statistic = $t^*$.
- The p-value is $P(t_{n-1} > |t^*|)$.
- If p-value $<\alpha$, we reject $H_0$ and conclude that $\mu\neq \mu_0$. Otherwise, we accept $H_0$. ###
### The $F$-test for population variances
Suppose the population has a normal distribution.
- $H_0:\sigma_1^2/\sigma_2^2=1$ versus $H_1: \sigma_1^2 /\sigma_2^2\neq 1$ (Assume that $\sigma_1^2 \geq \sigma_2^2$.)
- The $F$ statistic is $F_{STAT}=\frac{S_1^2}{S_2^2}\sim F_{n_1-1,n_2-1}$.
- Set $\alpha=0.05$.
- Realized $F$-statistic = $F^*$.
- The p-value is $P(F_{n_1-1,n_2-1} > F^*)$.
- If p-value $<\alpha$, we reject $H_0$ and conclude that $\sigma_1^2\neq \sigma_2^2$. Otherwise, we accept $H_0$. \textbf{6.2 $\chi^2$, $t$, and $F$ distributions}
:::
### The chi-squared distribution
If $Z\sim N(0,1)$. Then, $U =Z^2$ is called the chi-squared distribution (also chi-square distribution, or $\chi^2$ distribution) with 1 degree of freedom, denoted as $$U\sim \chi_1^2.$$
If $U_1,U_2,\ldots,U_n$ are independent chi-squared random variables with 1 degree of freedom, the distribution of $V = U_1+U_2+\cdots+U_n$ is called the chi-squared distribution with $n$ degrees of freedom and is denoted by $\chi^2_n$. We write
$$V\sim \chi^2_n$$
#### Other properties
- $\chi^2_n \stackrel{d}{=} Gamma(\alpha=n/2, \lambda = 1/2)$.
- Its density is
$$f(v)=\frac{1}{2^{n/2}\Gamma(n/2)}v^{(n/2)-1}e^{-v/2},\;v\geq 0.$$
- Its moment generating function is $M(t)=(1-2t)^{-n/2}$ for $t<1/2$.
- $E(V) = n$ and $Var(V)= 2n$.
- If $U$ and $V$ are independent and $U\sim \chi^2_n$ and $V\sim \chi^2_m$, then $U+V\sim \chi^2_{m+n}$.
### The $t$ distribution
If $Z\sim N(0,1)$ and $U\sim \chi^2_n$ and $Z$ and $U$ are independent, then the distribution of $$\frac{Z}{\sqrt{U/n}}$$ is called the $t$ distribution with $n$ degrees of freedom. We write
$$\frac{Z}{\sqrt{U/n}}\sim t_{n}.$$
The density function of $t_n$ is
$$f(t)=\frac{\Gamma[(n+1)/2]}{\sqrt{n\pi}\Gamma(n/2)}\left(1+\frac{t^2}{n}\right)^{-(n+1)/2}.$$
When $n\rightarrow \infty$, $t_n\rightarrow Z$.
### The $F$ distribution
Let $U$ and $V$ independent chi-squared random variables with $m$ and $n$ degrees of freedom, respectively. The distribution of
$$W =\frac{U/m}{V/n}$$
is called the $F$ distribution with $m$ and $n$ degrees of freedom and is denoted by $F_{m,n}$. (Check its density.) We write
$$W =\frac{U/m}{V/n}\sim F_{m,n}. $$
## 6.3 The sample mean and the sample variance
### The sample mean and sample variance
- Let $X_1,\ldots,X_n$ be independent $N(\mu,\sigma^2)$ random variables; we sometimes refer to them as sample from a normal distribution. The sample mean is
$$\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i.$$The sample variance is
$$S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2.$$
### Theorem A
The random variable $\bar{X}$ and the vector of random variables $(X_1-\bar{X}, X_2-\bar{X},\ldots,X_n-\bar{X})$ are independent. (Readings: proof in p.\ 196.)
### Corollary A
$\bar{X}$ and $S^2$ are independently distributed. (Readings: proof in p. 197.)
### Theorem B.
The distribution of $\frac{(n-1)S^2}{\sigma^2}$ is the chi-squared distribution with $n-1$ degrees of freedom. (Readings: proof in p. 197.)
#### Sketch of the proof.
Notice
$$\frac{(n-1)S^2}{\sigma^2} = \frac{(n-1)\left[\frac{1}{(n-1)}\sum_{i=1}^n(X_i-\bar{X})^2\right]}{\sigma^2}=\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{\sigma^2}=\sum_{i=1}^n\left(\frac{X_i-\bar{X}}{\sigma}\right)^2$$
### Corollary B
Let $\bar{X}$ and $S^2$ be as given. Then,
$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}.$$
#### Proof
It is known:
1. Corollary A: $\bar{X}$ and $S^2$ are independent.
2. Theorem B: $\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{(n-1)}$.
Moreover, we have
$$\frac{\bar{X}-\mu}{S/\sqrt{n}}= \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}} = \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}\times \frac{1}{n-1}}}\stackrel{d}{=}\frac{Z}{\sqrt{{\chi^2_{n-1}}/{(n-1)}}}\sim t_{n-1}. $$
### Example
Suppose the population has a normal distribution.
Consider: $H_0:\sigma_1^2/\sigma_2^2=1$ versus $H_1: \sigma_1^2 /\sigma_2^2\neq 1$ (Assume that $\sigma_1^2 \geq \sigma_2^2$.).
Show that the $F$ statistic is $F_{STAT}=\frac{S_1^2}{S_2^2}\sim F_{(n_1-1),(n_2-1)}$.
#### Sol.
Note that if $H_0$ is true, we have $\sigma_1^2=\sigma_2^2$.
$$\frac{S_1^2}{S_2^2} = \frac{(n_1-1)\frac{S_1^2}{\sigma_1^2(n_1-1)} }{(n_2-1)\frac{S_2^2}{\sigma_2^2(n_2-1)}}=\frac{\frac{(n_1-1)S_1^2}{\sigma_1^2}\frac{1}{(n_1-1)}}{\frac{(n_2-1)S_2^2}{\sigma_2^2}\frac{1}{(n_2-1)}}\stackrel{d}{=}\frac{\chi^2_{(n_1-1)}/(n_1-1)}{\chi^2_{(n_2-1)}/(n_2-1)}\sim F_{(n_1-1),(n_2-1)}.$$