# 🌟 **Vision Transformer (ViT) Tutorial – Part 4: Beyond Classification – DETR, Segmentation & Video Transformers** **#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision** --- ## πŸ”Ή **Table of Contents** 1. [Recap of Part 3](#recap-of-part-3) 2. [Beyond Image Classification: The Next Frontier](#beyond-image-classification-the-next-frontier) 3. [DETR: Object Detection with Transformers](#detr-object-detection-with-transformers) 4. [How DETR Works: Set Prediction & Bipartite Matching](#how-detr-works-set-prediction--bipartite-matching) 5. [Building DETR from Scratch (Conceptual)](#building-detr-from-scratch-conceptual) 6. [Segmenter: Semantic Segmentation with ViT](#segmenter-semantic-segmentation-with-vit) 7. [Video Swin Transformer: For Video Understanding](#video-swin-transformer-for-video-understanding) 8. [MAE: Masked Autoencoders for Self-Supervised Pretraining](#mae-masked-autoencoders-for-self-supervised-pretraining) 9. [Multimodal Transformers: CLIP & Flamingo](#multimodal-transformers-clip--flamingo) 10. [Training ViT from Scratch with MAE](#training-vit-from-scratch-with-mae) 11. [Comparing Architectures: CNNs vs Transformers in Vision Tasks](#comparing-architectures-cnns-vs-transformers-in-vision-tasks) 12. [Common Challenges & Best Practices](#common-challenges--best-practices) 13. [Visualizing Advanced ViT Architectures (Diagrams)](#visualizing-advanced-vit-architectures-diagrams) 14. [Summary & What’s Next in Part 5](#summary--whats-next-in-part-5) --- ## πŸ” **1. Recap of Part 3** In **Part 3**, we explored **real-world applications of ViT** through: - **Pretraining** and **transfer learning** using Hugging Face. - **Fine-tuning** ViT on CIFAR-100 with resizing and partial unfreezing. - Visualizing **attention rollout** to understand model behavior. - Comparing **ViT, DeiT, MobileViT**, and hybrid models. - Optimizing for **inference speed** using quantization and pruning. Now, in **Part 4**, we go **beyond image classification** β€” into the world of **object detection, segmentation, video, and self-supervised learning**. You’ll learn how Transformers are **replacing CNNs** in nearly every vision task. Let’s dive in! --- ## πŸš€ **2. Beyond Image Classification: The Next Frontier** For decades, vision was dominated by CNNs in: - **Object Detection** (YOLO, Faster R-CNN) - **Semantic Segmentation** (U-Net, DeepLab) - **Video Classification** (3D CNNs, I3D) - **Self-Supervised Learning** (SimCLR, MoCo) But now, **Transformers are taking over**. > βœ… The same architectural principles β€” **self-attention, global context, scalability** β€” apply to all modalities. We’ll explore: - **DETR** for detection - **Segmenter** for segmentation - **Video Swin Transformer** for video - **MAE** for self-supervised pretraining - **CLIP** for multimodal understanding --- ## 🎯 **3. DETR: Object Detection with Transformers** **DETR (DEtection TRansformer)** by Facebook AI (2020) is the first **end-to-end object detector** using Transformers. > πŸ“˜ Paper: *"End-to-End Object Detection with Transformers"* ### πŸ”Ή Why DETR is Revolutionary Traditional detectors use: - Anchor boxes - Non-Max Suppression (NMS) - Complex pipelines DETR replaces all that with: - A **CNN backbone** (e.g., ResNet) to extract features - A **Transformer encoder-decoder** to predict objects - **Set prediction** β€” no NMS needed > βœ… End-to-end, clean, and elegant. --- ## πŸ”„ **4. How DETR Works: Set Prediction & Bipartite Matching** ### βœ… Step 1: Backbone Feature Extraction Input image β†’ CNN (e.g., ResNet-50) β†’ feature map. ```python features = resnet_backbone(image) # (B, C, H', W') ``` --- ### βœ… Step 2: Add Positional Encoding Since Transformers need position info: ```python pos_encoding = positional_encoding_2d(H', W') # (H'*W', D) ``` --- ### βœ… Step 3: Flatten & Project to Query Space Flatten spatial dimensions: ```python features_flat = features.flatten(2).permute(0, 2, 1) # (B, N, D) features_with_pos = features_flat + pos_encoding ``` --- ### βœ… Step 4: Transformer Encoder Processes global context: ```python memory = transformer_encoder(features_with_pos) # (B, N, D) ``` --- ### βœ… Step 5: Decoder with Learnable Object Queries DETR uses **100 learnable object queries** (one per possible object): ```python queries = nn.Parameter(torch.randn(100, D)) # (100, D) ``` Decoder attends to encoder memory: ```python decoder_output = transformer_decoder(queries, memory) # (B, 100, D) ``` --- ### βœ… Step 6: Predict Bounding Boxes & Classes ```python boxes = bbox_head(decoder_output) # (B, 100, 4) classes = cls_head(decoder_output) # (B, 100, num_classes + 1) ``` Includes a **"no object"** class for unused queries. --- ### βœ… Step 7: Bipartite Matching (Loss) Assign predictions to ground truth using **Hungarian algorithm**. Minimize: $$ \mathcal{L} = \sum_{i=1}^{N} \mathcal{L}_{\text{match}}(\hat{y}_{\sigma(i)}, y_i) $$ where $\sigma$ is the optimal permutation. > βœ… No NMS, no anchors β€” pure set prediction. --- ## 🧱 **5. Building DETR from Scratch (Conceptual)** While full implementation is complex, here’s the core: ```python class DETR(nn.Module): def __init__(self, num_queries=100, num_classes=91): super().__init__() self.backbone = torchvision.models.resnet50(pretrained=True) self.backbone.fc = nn.Identity() # Remove classification head self.conv1x1 = nn.Conv2d(2048, 256, 1) # Reduce channels self.pos_encoding = PositionalEncoding2D(256) self.query_embed = nn.Embedding(num_queries, 256) self.transformer = Transformer(d_model=256) self.bbox_head = MLP(256, 256, 4, 3) # x,y,w,h self.cls_head = nn.Linear(256, num_classes + 1) def forward(self, x): # Backbone features = self.backbone.conv1(x) features = self.backbone.bn1(features) features = self.backbone.relu(features) features = self.backbone.maxpool(features) features = self.backbone.layer1(features) features = self.backbone.layer2(features) features = self.backbone.layer3(features) features = self.backbone.layer4(features) # (B, 2048, H', W') features = self.conv1x1(features) # (B, 256, H', W') # Flatten + pos encoding bs, c, h, w = features.shape features = features.flatten(2).permute(2, 0, 1) # (N, B, D) pos = self.pos_encoding(h, w).to(features.device) pos = pos.flatten(2).permute(2, 0, 1) # Transformer memory = self.transformer.encoder(features + pos) queries = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) out = self.transformer.decoder(queries, memory, memory_key_padding_mask=None) out = out.transpose(0, 1) # (B, 100, 256) # Heads boxes = self.bbox_head(out).sigmoid() # Normalize to [0,1] classes = self.cls_head(out) return {"pred_boxes": boxes, "pred_logits": classes} ``` > βœ… This is simplified β€” real DETR uses multi-scale features and better initialization. --- ## 🎨 **6. Segmenter: Semantic Segmentation with ViT** **Segmenter** applies ViT to **semantic segmentation** β€” assigning a class to each pixel. > πŸ“˜ Paper: *"Segmenter: Transformer for Semantic Segmentation"* ### βœ… How It Works 1. **ViT Encoder**: Processes image patches. 2. **Mask Transformer Decoder**: Predicts class for each patch. 3. **Upsample**: To full resolution. ```python logits = decoder(encoder_output) # (B, N, num_classes) logits = reshape_to_spatial(logits) # (B, num_classes, H', W') logits = interpolate(logits, scale_factor=patch_size) # (B, num_classes, H, W) ``` Uses **pixel-level cross-entropy loss**. > βœ… Outperforms CNNs like DeepLab on ADE20K. --- ### πŸ–ΌοΈ **Segmenter Architecture Diagram** ``` Input Image ↓ ViT Encoder (Patch Embedding + Transformer) ↓ [CLS] + Patch Tokens ↓ Mask Transformer Decoder ↓ Per-Patch Class Predictions ↓ Upsample to Full Resolution ↓ Segmentation Map ``` > βœ… Global context helps with large objects and boundaries. --- ## πŸŽ₯ **7. Video Swin Transformer: For Video Understanding** **Video Swin Transformer** extends **Swin Transformer** (hierarchical, shifted windows) to video. > πŸ“˜ Paper: *"Video Swin Transformer"* ### πŸ”Ή Key Ideas | Idea | Benefit | |------|--------| | **3D Patch Partitioning** | Split video into spatio-temporal patches | | **Shifted Windows** | Efficient local attention | | **Hierarchical Architecture** | Multi-scale modeling | | **Factorized Self-Attention** | Separate spatial and temporal attention | Input: Video clip β†’ split into $4Γ—32Γ—32$ patches (time Γ— height Γ— width). Processes long-range dependencies across **space and time**. > βœ… SOTA on **Kinetics-400**, **Something-Something**, **Charades**. --- ### πŸ–ΌοΈ **Video Swin Architecture** ``` Input Video (TΓ—HΓ—WΓ—C) ↓ Spatio-Temporal Patch Partitioning ↓ Swin Transformer Blocks (with shifted windows) ↓ Feature Maps at Multiple Scales ↓ Global Average Pooling ↓ Classification Head ``` > βœ… Combines efficiency of CNNs with global modeling of Transformers. --- ## πŸ”‹ **8. MAE: Masked Autoencoders for Self-Supervised Pretraining** **MAE (Masked Autoencoder)** enables **self-supervised pretraining** of ViT without labels. > πŸ“˜ Paper: *"Masked Autoencoders Are Scalable Vision Learners"* ### βœ… How MAE Works 1. **Mask 75% of patches** randomly. 2. **Encoder** sees only visible patches. 3. **Decoder** reconstructs masked patches. ```python visible_patches = patches[~mask] # 25% encoded = encoder(visible_patches) # (B, N_visible, D) decoded = decoder(encoded, mask) # (B, N, PΒ²Γ—C) loss = mse(decoded[mask], original_patches[mask]) ``` > βœ… Very efficient β€” encoder only processes 25% of patches. --- ### βœ… Why MAE is Powerful - Scales to **gigantic models** (ViT-Huge). - Achieves **SOTA on ImageNet** with no labels. - Simpler than contrastive methods (SimCLR, MoCo). Used to pretrain **ViT-Large** and **ViT-Huge**. --- ### πŸ–ΌοΈ **MAE Training Diagram** ``` Original Image ↓ Split into Patches ↓ Mask 75% (Random) ↓ Visible Patches β†’ Encoder β†’ Latent ↓ Latent + Mask Tokens β†’ Decoder ↓ Reconstruct All Patches ↓ MSE Loss vs Original ``` > βœ… Forces model to learn **global structure** and **context**. --- ## 🌐 **9. Multimodal Transformers: CLIP & Flamingo** ### πŸ”Ή **CLIP: Connecting Text and Images** **CLIP (Contrastive Language–Image Pretraining)** learns joint embeddings of images and text. > πŸ“˜ Paper: *"Learning Transferable Visual Models From Natural Language Supervision"* - Trained on **400M image-text pairs**. - Given a photo, it can **classify it without fine-tuning** (zero-shot). Example: ```python image_features = clip.encode_image(image) text_features = clip.encode_text("a photo of a cat, a dog, a car") similarity = (image_features @ text_features.T).softmax(dim=-1) ``` > βœ… No fine-tuning needed β€” just prompt engineering. Used in **DALLΒ·E**, **Stable Diffusion**, and **search engines**. --- ### πŸ”Ή **Flamingo: Few-Shot Visual Reasoning** **Flamingo** by DeepMind handles **images + text + video** in a single model. - Can answer questions about images. - Learns from **few examples** (in-context learning). - Uses **gated cross-attention** to fuse modalities. > βœ… The future of **general-purpose AI**. --- ## πŸ”§ **10. Training ViT from Scratch with MAE** Let’s outline how to **pretrain ViT using MAE**. ### βœ… Step 1: Prepare Dataset Use **ImageNet** or **YFCC** (100M images). No labels needed. ```python dataset = ImageFolder('imagenet/train', transform=transform) ``` --- ### βœ… Step 2: Define MAE Model ```python class MAE(nn.Module): def __init__(self, encoder, decoder, mask_ratio=0.75): super().__init__() self.encoder = encoder self.decoder = decoder self.mask_ratio = mask_ratio self.patchify = Patchify() self.unpatchify = Unpatchify() def random_masking(self, x, mask_ratio): N, L, D = x.shape len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) ids_shuffle = torch.argsort(noise, dim=1) ids_restore = torch.argsort(ids_shuffle, dim=1) ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather(x, 1, ids_keep.unsqueeze(-1).repeat(1, 1, D)) mask = torch.ones([N, L], device=x.device) mask[:, :len_keep] = 0 mask = torch.gather(mask, 1, ids_restore) return x_masked, mask, ids_restore def forward(self, imgs): x = self.patchify(imgs) # (N, L, D) x_masked, mask, ids_restore = self.random_masking(x, self.mask_ratio) latent = self.encoder(x_masked) pred = self.decoder(latent, ids_restore) loss = mse_loss(pred, self.patchify(imgs), mask) return loss, pred, mask ``` --- ### βœ… Step 3: Train ```python model = MAE(ViT(), Decoder(), mask_ratio=0.75) optimizer = AdamW(model.parameters(), lr=1.5e-4) for epoch in range(800): for imgs in dataloader: loss, _, _ = model(imgs) loss.backward() optimizer.step() optimizer.zero_grad() ``` > βœ… After pretraining, fine-tune on ImageNet for classification. --- ## πŸ“Š **11. Comparing Architectures: CNNs vs Transformers in Vision Tasks** | Task | CNN Approach | Transformer Approach | Advantage | |------|--------------|----------------------|----------| | **Classification** | ResNet, EfficientNet | ViT, DeiT | Better scaling | | **Detection** | Faster R-CNN, YOLO | DETR | End-to-end, no NMS | | **Segmentation** | U-Net, DeepLab | Segmenter | Global context | | **Video** | I3D, SlowFast | Video Swin | Spatio-temporal attention | | **Self-Supervised** | SimCLR, MoCo | MAE | Simpler, scalable | | **Multimodal** | CNN + RNN | CLIP, Flamingo | Zero-shot learning | > βœ… Transformers are **unifying vision tasks** under one architecture. --- ## ⚠️ **12. Common Challenges & Best Practices** ### ❌ **Challenge 1: High Memory Usage** ViT has $O(N^2)$ attention. βœ… **Fix**: Use **gradient checkpointing**, **smaller patches**, or **sparse attention**. --- ### ❌ **Challenge 2: Slow Inference** 196 patches β†’ 196Γ—196 attention matrix. βœ… **Fix**: Use **patch merging**, **distillation**, or **MobileViT**. --- ### ❌ **Challenge 3: Data Hunger** ViT needs large datasets. βœ… **Fix**: Use **MAE**, **DeiT**, or **transfer learning**. --- ### βœ… **Best Practice 1: Start with Pretrained Models** Don’t train from scratch unless you have 1M+ images. --- ### βœ… **Best Practice 2: Use Hybrid Models for Edge Devices** CNN + Transformer (e.g., BoTNet) balances speed and accuracy. --- ### βœ… **Best Practice 3: Monitor Attention Patterns** Use **attention rollout** to debug. --- ## πŸ–ΌοΈ **13. Visualizing Advanced ViT Architectures (Diagrams)** ### 🎯 **DETR Architecture** ``` Image β†’ ResNet β†’ Feature Map ↓ Add Positional Encoding ↓ Transformer Encoder ↓ Object Queries + Decoder ↓ Predict 100 Boxes & Classes ↓ Bipartite Matching (Loss) ``` --- ### 🎨 **Segmenter** ``` Image β†’ ViT Encoder ↓ Patch Tokens ↓ Mask Transformer Decoder ↓ Per-Patch Class Predictions ↓ Upsample to Full Size ``` --- ### πŸŽ₯ **Video Swin** ``` Video Clip β†’ 3D Patch Partitioning ↓ Swin Blocks (Shifted Windows) ↓ Multi-Scale Features ↓ Classification or Action Detection ``` --- ### πŸ”‹ **MAE** ``` Image β†’ Patches β†’ Mask 75% ↓ Visible Patches β†’ Encoder ↓ Latent + Mask Tokens β†’ Decoder ↓ Reconstruct All Patches (MSE Loss) ``` --- ## 🏁 **14. Summary & What’s Next in Part 5** ### βœ… **What You’ve Learned in Part 4** - **DETR**: End-to-end object detection with Transformers. - **Segmenter**: ViT for semantic segmentation. - **Video Swin**: Spatio-temporal modeling for video. - **MAE**: Self-supervised pretraining via masking. - **CLIP & Flamingo**: Multimodal vision-language models. - How to **train ViT from scratch** using MAE. --- ### πŸ”œ **What’s Coming in Part 5: Efficient Vision Transformers – MobileViT, TinyViT, Edge Deployment** In the next part, we’ll explore: - πŸ“± **MobileViT**: Lightweight ViT for mobile. - πŸš€ **TinyViT**: Distilled, fast inference. - πŸ› οΈ **ONNX, TensorRT, Core ML** for deployment. - πŸ”Œ **Hugging Face Pipelines** for production. - πŸ§ͺ **Quantization, Pruning, Knowledge Distillation**. - 🌐 **Serving ViT with FastAPI or TorchServe**. > πŸ“Œ **#MobileViT #TinyViT #ModelOptimization #EdgeAI #ONNX #TorchServe** --- ## πŸ™Œ Final Words You’ve now seen how **Transformers are revolutionizing every corner of computer vision** β€” from detection to video to self-supervised learning. > πŸ’¬ **"The era of domain-specific architectures is ending. The future is general, scalable, and attention-based."** In **Part 5**, we’ll bring ViT to the **edge** β€” making it fast, small, and ready for real-world apps. --- πŸ“Œ **Pro Tip**: Bookmark this series. You’re building expertise in the **next generation of AI**. πŸ” **Share this guide** to help others master **modern computer vision**. --- βœ… **You're now ready for Part 5!** We're going deep into **efficient Vision Transformers and real-world deployment**. #VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision #Transformers