# π **Vision Transformer (ViT) Tutorial β Part 4: Beyond Classification β DETR, Segmentation & Video Transformers**
**#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision**
---
## πΉ **Table of Contents**
1. [Recap of Part 3](#recap-of-part-3)
2. [Beyond Image Classification: The Next Frontier](#beyond-image-classification-the-next-frontier)
3. [DETR: Object Detection with Transformers](#detr-object-detection-with-transformers)
4. [How DETR Works: Set Prediction & Bipartite Matching](#how-detr-works-set-prediction--bipartite-matching)
5. [Building DETR from Scratch (Conceptual)](#building-detr-from-scratch-conceptual)
6. [Segmenter: Semantic Segmentation with ViT](#segmenter-semantic-segmentation-with-vit)
7. [Video Swin Transformer: For Video Understanding](#video-swin-transformer-for-video-understanding)
8. [MAE: Masked Autoencoders for Self-Supervised Pretraining](#mae-masked-autoencoders-for-self-supervised-pretraining)
9. [Multimodal Transformers: CLIP & Flamingo](#multimodal-transformers-clip--flamingo)
10. [Training ViT from Scratch with MAE](#training-vit-from-scratch-with-mae)
11. [Comparing Architectures: CNNs vs Transformers in Vision Tasks](#comparing-architectures-cnns-vs-transformers-in-vision-tasks)
12. [Common Challenges & Best Practices](#common-challenges--best-practices)
13. [Visualizing Advanced ViT Architectures (Diagrams)](#visualizing-advanced-vit-architectures-diagrams)
14. [Summary & Whatβs Next in Part 5](#summary--whats-next-in-part-5)
---
## π **1. Recap of Part 3**
In **Part 3**, we explored **real-world applications of ViT** through:
- **Pretraining** and **transfer learning** using Hugging Face.
- **Fine-tuning** ViT on CIFAR-100 with resizing and partial unfreezing.
- Visualizing **attention rollout** to understand model behavior.
- Comparing **ViT, DeiT, MobileViT**, and hybrid models.
- Optimizing for **inference speed** using quantization and pruning.
Now, in **Part 4**, we go **beyond image classification** β into the world of **object detection, segmentation, video, and self-supervised learning**.
Youβll learn how Transformers are **replacing CNNs** in nearly every vision task.
Letβs dive in!
---
## π **2. Beyond Image Classification: The Next Frontier**
For decades, vision was dominated by CNNs in:
- **Object Detection** (YOLO, Faster R-CNN)
- **Semantic Segmentation** (U-Net, DeepLab)
- **Video Classification** (3D CNNs, I3D)
- **Self-Supervised Learning** (SimCLR, MoCo)
But now, **Transformers are taking over**.
> β
The same architectural principles β **self-attention, global context, scalability** β apply to all modalities.
Weβll explore:
- **DETR** for detection
- **Segmenter** for segmentation
- **Video Swin Transformer** for video
- **MAE** for self-supervised pretraining
- **CLIP** for multimodal understanding
---
## π― **3. DETR: Object Detection with Transformers**
**DETR (DEtection TRansformer)** by Facebook AI (2020) is the first **end-to-end object detector** using Transformers.
> π Paper: *"End-to-End Object Detection with Transformers"*
### πΉ Why DETR is Revolutionary
Traditional detectors use:
- Anchor boxes
- Non-Max Suppression (NMS)
- Complex pipelines
DETR replaces all that with:
- A **CNN backbone** (e.g., ResNet) to extract features
- A **Transformer encoder-decoder** to predict objects
- **Set prediction** β no NMS needed
> β
End-to-end, clean, and elegant.
---
## π **4. How DETR Works: Set Prediction & Bipartite Matching**
### β
Step 1: Backbone Feature Extraction
Input image β CNN (e.g., ResNet-50) β feature map.
```python
features = resnet_backbone(image) # (B, C, H', W')
```
---
### β
Step 2: Add Positional Encoding
Since Transformers need position info:
```python
pos_encoding = positional_encoding_2d(H', W') # (H'*W', D)
```
---
### β
Step 3: Flatten & Project to Query Space
Flatten spatial dimensions:
```python
features_flat = features.flatten(2).permute(0, 2, 1) # (B, N, D)
features_with_pos = features_flat + pos_encoding
```
---
### β
Step 4: Transformer Encoder
Processes global context:
```python
memory = transformer_encoder(features_with_pos) # (B, N, D)
```
---
### β
Step 5: Decoder with Learnable Object Queries
DETR uses **100 learnable object queries** (one per possible object):
```python
queries = nn.Parameter(torch.randn(100, D)) # (100, D)
```
Decoder attends to encoder memory:
```python
decoder_output = transformer_decoder(queries, memory) # (B, 100, D)
```
---
### β
Step 6: Predict Bounding Boxes & Classes
```python
boxes = bbox_head(decoder_output) # (B, 100, 4)
classes = cls_head(decoder_output) # (B, 100, num_classes + 1)
```
Includes a **"no object"** class for unused queries.
---
### β
Step 7: Bipartite Matching (Loss)
Assign predictions to ground truth using **Hungarian algorithm**.
Minimize:
$$
\mathcal{L} = \sum_{i=1}^{N} \mathcal{L}_{\text{match}}(\hat{y}_{\sigma(i)}, y_i)
$$
where $\sigma$ is the optimal permutation.
> β
No NMS, no anchors β pure set prediction.
---
## π§± **5. Building DETR from Scratch (Conceptual)**
While full implementation is complex, hereβs the core:
```python
class DETR(nn.Module):
def __init__(self, num_queries=100, num_classes=91):
super().__init__()
self.backbone = torchvision.models.resnet50(pretrained=True)
self.backbone.fc = nn.Identity() # Remove classification head
self.conv1x1 = nn.Conv2d(2048, 256, 1) # Reduce channels
self.pos_encoding = PositionalEncoding2D(256)
self.query_embed = nn.Embedding(num_queries, 256)
self.transformer = Transformer(d_model=256)
self.bbox_head = MLP(256, 256, 4, 3) # x,y,w,h
self.cls_head = nn.Linear(256, num_classes + 1)
def forward(self, x):
# Backbone
features = self.backbone.conv1(x)
features = self.backbone.bn1(features)
features = self.backbone.relu(features)
features = self.backbone.maxpool(features)
features = self.backbone.layer1(features)
features = self.backbone.layer2(features)
features = self.backbone.layer3(features)
features = self.backbone.layer4(features) # (B, 2048, H', W')
features = self.conv1x1(features) # (B, 256, H', W')
# Flatten + pos encoding
bs, c, h, w = features.shape
features = features.flatten(2).permute(2, 0, 1) # (N, B, D)
pos = self.pos_encoding(h, w).to(features.device)
pos = pos.flatten(2).permute(2, 0, 1)
# Transformer
memory = self.transformer.encoder(features + pos)
queries = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
out = self.transformer.decoder(queries, memory, memory_key_padding_mask=None)
out = out.transpose(0, 1) # (B, 100, 256)
# Heads
boxes = self.bbox_head(out).sigmoid() # Normalize to [0,1]
classes = self.cls_head(out)
return {"pred_boxes": boxes, "pred_logits": classes}
```
> β
This is simplified β real DETR uses multi-scale features and better initialization.
---
## π¨ **6. Segmenter: Semantic Segmentation with ViT**
**Segmenter** applies ViT to **semantic segmentation** β assigning a class to each pixel.
> π Paper: *"Segmenter: Transformer for Semantic Segmentation"*
### β
How It Works
1. **ViT Encoder**: Processes image patches.
2. **Mask Transformer Decoder**: Predicts class for each patch.
3. **Upsample**: To full resolution.
```python
logits = decoder(encoder_output) # (B, N, num_classes)
logits = reshape_to_spatial(logits) # (B, num_classes, H', W')
logits = interpolate(logits, scale_factor=patch_size) # (B, num_classes, H, W)
```
Uses **pixel-level cross-entropy loss**.
> β
Outperforms CNNs like DeepLab on ADE20K.
---
### πΌοΈ **Segmenter Architecture Diagram**
```
Input Image
β
ViT Encoder (Patch Embedding + Transformer)
β
[CLS] + Patch Tokens
β
Mask Transformer Decoder
β
Per-Patch Class Predictions
β
Upsample to Full Resolution
β
Segmentation Map
```
> β
Global context helps with large objects and boundaries.
---
## π₯ **7. Video Swin Transformer: For Video Understanding**
**Video Swin Transformer** extends **Swin Transformer** (hierarchical, shifted windows) to video.
> π Paper: *"Video Swin Transformer"*
### πΉ Key Ideas
| Idea | Benefit |
|------|--------|
| **3D Patch Partitioning** | Split video into spatio-temporal patches |
| **Shifted Windows** | Efficient local attention |
| **Hierarchical Architecture** | Multi-scale modeling |
| **Factorized Self-Attention** | Separate spatial and temporal attention |
Input: Video clip β split into $4Γ32Γ32$ patches (time Γ height Γ width).
Processes long-range dependencies across **space and time**.
> β
SOTA on **Kinetics-400**, **Something-Something**, **Charades**.
---
### πΌοΈ **Video Swin Architecture**
```
Input Video (TΓHΓWΓC)
β
Spatio-Temporal Patch Partitioning
β
Swin Transformer Blocks (with shifted windows)
β
Feature Maps at Multiple Scales
β
Global Average Pooling
β
Classification Head
```
> β
Combines efficiency of CNNs with global modeling of Transformers.
---
## π **8. MAE: Masked Autoencoders for Self-Supervised Pretraining**
**MAE (Masked Autoencoder)** enables **self-supervised pretraining** of ViT without labels.
> π Paper: *"Masked Autoencoders Are Scalable Vision Learners"*
### β
How MAE Works
1. **Mask 75% of patches** randomly.
2. **Encoder** sees only visible patches.
3. **Decoder** reconstructs masked patches.
```python
visible_patches = patches[~mask] # 25%
encoded = encoder(visible_patches) # (B, N_visible, D)
decoded = decoder(encoded, mask) # (B, N, PΒ²ΓC)
loss = mse(decoded[mask], original_patches[mask])
```
> β
Very efficient β encoder only processes 25% of patches.
---
### β
Why MAE is Powerful
- Scales to **gigantic models** (ViT-Huge).
- Achieves **SOTA on ImageNet** with no labels.
- Simpler than contrastive methods (SimCLR, MoCo).
Used to pretrain **ViT-Large** and **ViT-Huge**.
---
### πΌοΈ **MAE Training Diagram**
```
Original Image
β
Split into Patches
β
Mask 75% (Random)
β
Visible Patches β Encoder β Latent
β
Latent + Mask Tokens β Decoder
β
Reconstruct All Patches
β
MSE Loss vs Original
```
> β
Forces model to learn **global structure** and **context**.
---
## π **9. Multimodal Transformers: CLIP & Flamingo**
### πΉ **CLIP: Connecting Text and Images**
**CLIP (Contrastive LanguageβImage Pretraining)** learns joint embeddings of images and text.
> π Paper: *"Learning Transferable Visual Models From Natural Language Supervision"*
- Trained on **400M image-text pairs**.
- Given a photo, it can **classify it without fine-tuning** (zero-shot).
Example:
```python
image_features = clip.encode_image(image)
text_features = clip.encode_text("a photo of a cat, a dog, a car")
similarity = (image_features @ text_features.T).softmax(dim=-1)
```
> β
No fine-tuning needed β just prompt engineering.
Used in **DALLΒ·E**, **Stable Diffusion**, and **search engines**.
---
### πΉ **Flamingo: Few-Shot Visual Reasoning**
**Flamingo** by DeepMind handles **images + text + video** in a single model.
- Can answer questions about images.
- Learns from **few examples** (in-context learning).
- Uses **gated cross-attention** to fuse modalities.
> β
The future of **general-purpose AI**.
---
## π§ **10. Training ViT from Scratch with MAE**
Letβs outline how to **pretrain ViT using MAE**.
### β
Step 1: Prepare Dataset
Use **ImageNet** or **YFCC** (100M images).
No labels needed.
```python
dataset = ImageFolder('imagenet/train', transform=transform)
```
---
### β
Step 2: Define MAE Model
```python
class MAE(nn.Module):
def __init__(self, encoder, decoder, mask_ratio=0.75):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.mask_ratio = mask_ratio
self.patchify = Patchify()
self.unpatchify = Unpatchify()
def random_masking(self, x, mask_ratio):
N, L, D = x.shape
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device)
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, 1, ids_keep.unsqueeze(-1).repeat(1, 1, D))
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
mask = torch.gather(mask, 1, ids_restore)
return x_masked, mask, ids_restore
def forward(self, imgs):
x = self.patchify(imgs) # (N, L, D)
x_masked, mask, ids_restore = self.random_masking(x, self.mask_ratio)
latent = self.encoder(x_masked)
pred = self.decoder(latent, ids_restore)
loss = mse_loss(pred, self.patchify(imgs), mask)
return loss, pred, mask
```
---
### β
Step 3: Train
```python
model = MAE(ViT(), Decoder(), mask_ratio=0.75)
optimizer = AdamW(model.parameters(), lr=1.5e-4)
for epoch in range(800):
for imgs in dataloader:
loss, _, _ = model(imgs)
loss.backward()
optimizer.step()
optimizer.zero_grad()
```
> β
After pretraining, fine-tune on ImageNet for classification.
---
## π **11. Comparing Architectures: CNNs vs Transformers in Vision Tasks**
| Task | CNN Approach | Transformer Approach | Advantage |
|------|--------------|----------------------|----------|
| **Classification** | ResNet, EfficientNet | ViT, DeiT | Better scaling |
| **Detection** | Faster R-CNN, YOLO | DETR | End-to-end, no NMS |
| **Segmentation** | U-Net, DeepLab | Segmenter | Global context |
| **Video** | I3D, SlowFast | Video Swin | Spatio-temporal attention |
| **Self-Supervised** | SimCLR, MoCo | MAE | Simpler, scalable |
| **Multimodal** | CNN + RNN | CLIP, Flamingo | Zero-shot learning |
> β
Transformers are **unifying vision tasks** under one architecture.
---
## β οΈ **12. Common Challenges & Best Practices**
### β **Challenge 1: High Memory Usage**
ViT has $O(N^2)$ attention.
β
**Fix**: Use **gradient checkpointing**, **smaller patches**, or **sparse attention**.
---
### β **Challenge 2: Slow Inference**
196 patches β 196Γ196 attention matrix.
β
**Fix**: Use **patch merging**, **distillation**, or **MobileViT**.
---
### β **Challenge 3: Data Hunger**
ViT needs large datasets.
β
**Fix**: Use **MAE**, **DeiT**, or **transfer learning**.
---
### β
**Best Practice 1: Start with Pretrained Models**
Donβt train from scratch unless you have 1M+ images.
---
### β
**Best Practice 2: Use Hybrid Models for Edge Devices**
CNN + Transformer (e.g., BoTNet) balances speed and accuracy.
---
### β
**Best Practice 3: Monitor Attention Patterns**
Use **attention rollout** to debug.
---
## πΌοΈ **13. Visualizing Advanced ViT Architectures (Diagrams)**
### π― **DETR Architecture**
```
Image β ResNet β Feature Map
β
Add Positional Encoding
β
Transformer Encoder
β
Object Queries + Decoder
β
Predict 100 Boxes & Classes
β
Bipartite Matching (Loss)
```
---
### π¨ **Segmenter**
```
Image β ViT Encoder
β
Patch Tokens
β
Mask Transformer Decoder
β
Per-Patch Class Predictions
β
Upsample to Full Size
```
---
### π₯ **Video Swin**
```
Video Clip β 3D Patch Partitioning
β
Swin Blocks (Shifted Windows)
β
Multi-Scale Features
β
Classification or Action Detection
```
---
### π **MAE**
```
Image β Patches β Mask 75%
β
Visible Patches β Encoder
β
Latent + Mask Tokens β Decoder
β
Reconstruct All Patches (MSE Loss)
```
---
## π **14. Summary & Whatβs Next in Part 5**
### β
**What Youβve Learned in Part 4**
- **DETR**: End-to-end object detection with Transformers.
- **Segmenter**: ViT for semantic segmentation.
- **Video Swin**: Spatio-temporal modeling for video.
- **MAE**: Self-supervised pretraining via masking.
- **CLIP & Flamingo**: Multimodal vision-language models.
- How to **train ViT from scratch** using MAE.
---
### π **Whatβs Coming in Part 5: Efficient Vision Transformers β MobileViT, TinyViT, Edge Deployment**
In the next part, weβll explore:
- π± **MobileViT**: Lightweight ViT for mobile.
- π **TinyViT**: Distilled, fast inference.
- π οΈ **ONNX, TensorRT, Core ML** for deployment.
- π **Hugging Face Pipelines** for production.
- π§ͺ **Quantization, Pruning, Knowledge Distillation**.
- π **Serving ViT with FastAPI or TorchServe**.
> π **#MobileViT #TinyViT #ModelOptimization #EdgeAI #ONNX #TorchServe**
---
## π Final Words
Youβve now seen how **Transformers are revolutionizing every corner of computer vision** β from detection to video to self-supervised learning.
> π¬ **"The era of domain-specific architectures is ending. The future is general, scalable, and attention-based."**
In **Part 5**, weβll bring ViT to the **edge** β making it fast, small, and ready for real-world apps.
---
π **Pro Tip**: Bookmark this series. Youβre building expertise in the **next generation of AI**.
π **Share this guide** to help others master **modern computer vision**.
---
β
**You're now ready for Part 5!**
We're going deep into **efficient Vision Transformers and real-world deployment**.
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision #Transformers