### **Top 100 Flask Developer Interview Questions & Answers (Part 4: Questions 301–400)**
---
#### **301. How do you deploy Flask on AWS Elastic Beanstalk with Docker?**
**Answer:**
1. Create `Dockerfile` (see Q145)
2. Add `elasticbeanstalk` config:
```yaml
# .ebextensions/flask.config
option_settings:
aws:elasticbeanstalk:container:docker:environment:
FLASK_ENV: production
aws:elasticbeanstalk:application:environment:
SECRET_KEY: <%= ENV['SECRET_KEY'] %>
```
3. Deploy: `eb deploy --staged`
---
#### **302. How do you configure AWS RDS IAM authentication for Flask?**
**Answer:**
```python
import boto3
from sqlalchemy.engine import URL
client = boto3.client('rds')
token = client.generate_db_auth_token(
DBHostname=os.getenv('RDS_HOST'),
Port=5432,
DBUsername='iam_user',
Region='us-east-1'
)
app.config['SQLALCHEMY_DATABASE_URI'] = URL.create(
"postgresql+psycopg2",
username="iam_user",
password=token,
host=os.getenv('RDS_HOST'),
database="mydb"
)
```
---
#### **303. How do you implement Cloudflare rate limiting for Flask apps?**
**Answer:** Configure in Cloudflare dashboard:
1. **Rules > Rate limiting**:
- Path: `/api/*`
- Threshold: `100 requests/5 minutes`
- Action: `Block`
2. Verify headers in Flask:
```python
@app.before_request
def check_cloudflare():
if request.headers.get('CF-RAY'):
g.cloudflare = True
```
---
#### **304. How do you set up AWS X-Ray tracing for Flask?**
**Answer:**
```python
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
xray_recorder.configure(service='Flask App')
XRayMiddleware(app, xray_recorder)
# Add plugins for AWS services
from aws_xray_sdk.ext.dbapi import XRayTracedConn
conn = XRayTracedConn(psycopg2.connect, 'postgresql://...')
# Manual subsegments
with xray_recorder.in_subsegment('external_call'):
requests.get('https://api.example.com')
```
---
#### **305. How do you handle "cold starts" in AWS Lambda Flask deployments?**
**Answer:** Mitigation strategies:
1. **Provisioned concurrency**: Keep warm instances
2. **Optimize package size**: Remove unused dependencies
3. **Lazy imports**:
```python
def lambda_handler(event, context):
from app import create_app # Import inside handler
return Mangum(create_app())(event, context)
```
4. **Keep-alive pings**: Scheduled CloudWatch Events
---
#### **306. How do you configure GCP Cloud SQL Auth Proxy for Flask?**
**Answer:**
1. Start proxy:
```bash
cloud_sql_proxy -instances=my-project:us-central1:my-db=tcp:5432
```
2. Configure Flask:
```python
app.config['SQLALCHEMY_DATABASE_URI'] = (
f"postgresql+pg8000://user:password@127.0.0.1:5432/mydb"
)
```
*Alternative:* Use [Cloud SQL Python Connector](https://pypi.org/project/cloud-sql-python-connector/)
---
#### **307. How do you implement Azure Active Directory auth in Flask?**
**Answer:** Use `flask-oidc`:
```python
oidc = OpenIDConnect(app)
@app.route('/login')
@oidc.require_login
def login():
return redirect(url_for('dashboard'))
@app.route('/dashboard')
@oidc.accept_token(True)
def dashboard():
return f"Hello {g.oidc_token_info['sub']}"
```
*Configure:*
```ini
OIDC_CLIENT_SECRETS = {
"web": {
"client_id": "AZURE_CLIENT_ID",
"client_secret": "AZURE_CLIENT_SECRET",
"auth_uri": "https://login.microsoftonline.com/common/oauth2/v2.0/authorize",
"token_uri": "https://login.microsoftonline.com/common/oauth2/v2.0/token"
}
}
```
---
#### **308. How do you set up Google Cloud Trace for Flask?**
**Answer:**
```python
from opentelemetry import trace
from opentelemetry.exporter.cloud_trace import CloudTraceSpanExporter
from opentelemetry.instrumentation.flask import FlaskInstrumentor
from opentelemetry.propagate import set_global_textmap
from opentelemetry.propagators.cloud_trace_propagator import (
CloudTraceFormatPropagator
)
set_global_textmap(CloudTraceFormatPropagator())
FlaskInstrumentor().instrument_app(app)
trace.get_tracer_provider().add_span_processor(
CloudTraceSpanExporter()
)
```
---
#### **309. How do you configure AWS ALB sticky sessions for Flask?**
**Answer:**
1. Enable **stickiness** in ALB target group:
- Stickiness type: `app_cookie`
- Cookie name: `session_id`
2. Configure Flask to use cookie-based sessions:
```python
app.config.update(
SESSION_COOKIE_NAME='session_id',
SESSION_COOKIE_SECURE=True
)
```
---
#### **310. How do you implement "canary deployments" for Flask apps on Kubernetes?**
**Answer:**
1. Deploy new version with `canary` label:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: flask-app-canary
spec:
replicas: 2
selector:
matchLabels:
app: flask-app
version: canary
```
2. Configure Istio route rules:
```yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
spec:
http:
- route:
- destination:
host: flask-app
subset: v1
weight: 90
- destination:
host: flask-app
subset: canary
weight: 10
```
---
#### **311. How do you configure Prometheus metrics for Flask?**
**Answer:** Use `prometheus_flask_exporter`:
```python
from prometheus_flask_exporter import PrometheusMetrics
metrics = PrometheusMetrics(app)
metrics.info('app_info', 'Application info', version='1.0.0')
@metrics.do_not_track()
@metrics.summary('request_latency_seconds', 'Request latency')
@app.route('/data')
def data():
# ...
```
*Scrape via:*
```yaml
# prometheus.yml
scrape_configs:
- job_name: 'flask'
static_configs:
- targets: ['flask-app:5000']
```
---
#### **312. How do you track custom metrics in AWS CloudWatch?**
**Answer:**
```python
import boto3
from flask import g
cloudwatch = boto3.client('cloudwatch')
@app.before_request
def start_timer():
g.start = time.time()
@app.after_request
def log_request(response):
duration = time.time() - g.start
cloudwatch.put_metric_data(
Namespace='FlaskApp',
MetricData=[{
'MetricName': 'RequestDuration',
'Value': duration,
'Unit': 'Seconds',
'Dimensions': [{'Name': 'Endpoint', 'Value': request.path}]
}]
)
return response
```
---
#### **313. How do you implement "blue-green deployments" on Heroku?**
**Answer:**
1. Deploy to staging app: `git push heroku-staging main`
2. Run migrations: `heroku run flask db upgrade --app staging-app`
3. Swap URLs:
```bash
heroku pipelines:promote --app production-pipeline --to production
```
4. Verify then destroy old release
---
#### **314. How do you configure Datadog APM for Flask?**
**Answer:**
```python
from ddtrace import tracer, patch_all
patch_all()
@app.route('/process')
def process():
with tracer.trace("custom_operation"):
# ...
return "Done"
```
*Environment:*
```bash
DD_SERVICE=flask-app
DD_ENV=production
DD_TRACE_AGENT_URL=http://datadog:8126
```
---
#### **315. How do you set up GitHub Actions CI/CD for Flask?**
**Answer:** `.github/workflows/ci.yml`:
```yaml
name: Flask CI/CD
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Run tests
run: pytest
- name: Deploy to AWS
if: github.ref == 'refs/heads/main'
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
run: eb deploy production
```
---
#### **316. How do you implement "feature branch deployments" on Vercel?**
**Answer:** For Flask APIs (via serverless functions):
1. Structure project:
```
/api
/__vercel
output
static
config.json
hello.py
```
2. `hello.py`:
```python
def handler(request):
return {"body": "Hello from feature branch!", "statusCode": 200}
```
3. Configure `vercel.json`:
```json
{
"builds": [
{ "src": "api/hello.py", "use": "@vercel/python" }
]
}
```
---
#### **317. How do you configure log rotation for Gunicorn?**
**Answer:**
```bash
gunicorn app:app \
--access-logfile - \
--error-logfile gunicorn.log \
--log-config <(cat <<EOF
[loggers]
keys = root
[handlers]
keys = file
[formatters]
keys = generic
[logger_root]
level = INFO
handlers = file
[handler_file]
class = handlers.RotatingFileHandler
args = ('gunicorn.log', 'a', 100*1024*1024, 10)
formatter = generic
[formatter_generic]
format = %(asctime)s [%(process)d] [%(levelname)s] %(message)s
EOF
)
```
---
#### **318. How do you implement "circuit breakers" for external APIs in production?**
**Answer:** With `pybreaker` + statsd:
```python
import statsd
from pybreaker import CircuitBreaker
breaker = CircuitBreaker(
fail_max=5,
reset_timeout=60,
exclude=[requests.HTTPError]
)
@breaker
def call_external():
statsd.increment("external_api.calls")
return requests.get("https://api.example.com")
# Track state changes
breaker.state_change += lambda old, new: statsd.gauge(
"external_api.circuit_breaker",
1 if new.name == "open" else 0
)
```
---
#### **319. How do you set up Grafana alerts for Flask errors?**
**Answer:**
1. Push logs to Loki:
```python
from grafana_loki import LokiHandler
handler = LokiHandler(url="http://loki:3100/loki/api/v1/push", tags={"app": "flask"})
app.logger.addHandler(handler)
```
2. Create alert rule in Grafana:
```
count_over_time(
{app="flask"} |~ "ERROR" [5m]
) > 10
```
---
#### **320. How do you configure Kubernetes liveness probes for Flask?**
**Answer:**
```yaml
livenessProbe:
httpGet:
path: /health
port: 5000
initialDelaySeconds: 15
periodSeconds: 20
failureThreshold: 3
# In Flask:
@app.route('/health')
def health():
try:
db.engine.execute('SELECT 1')
return 'OK', 200
except Exception:
return 'DB connection failed', 500
```
---
#### **321. How do you implement "distributed tracing" across Flask and Celery?**
**Answer:** Propagate trace context:
```python
# In Flask
from opentelemetry.propagate import inject
@app.route('/task')
def task():
headers = {}
inject(headers) # Inject trace context
process_task.apply_async(kwargs={'headers': headers})
# In Celery task
from opentelemetry.propagate import extract
from opentelemetry.trace import set_span_in_context
@celery.task
def process_task(headers):
ctx = extract(headers)
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("process_task", context=ctx):
# Task logic
```
---
#### **322. How do you configure AWS CloudFront for Flask static files?**
**Answer:**
1. Set S3 bucket as origin
2. Configure cache behaviors:
- Path pattern: `/static/*`
- TTL: `31536000` (1 year)
- Query string: `Forward all, cache based on all`
3. In Flask:
```python
app.config['STATIC_URL_PATH'] = os.getenv('CLOUDFRONT_URL', '/static')
```
---
#### **323. How do you implement "real-time logs" with Papertrail?**
**Answer:**
```python
import logging
from logging.handlers import SysLogHandler
handler = SysLogHandler(address=('logsN.papertrailapp.com', PORT))
formatter = logging.Formatter('flask-app: %(message)s')
handler.setFormatter(formatter)
app.logger.addHandler(handler)
app.logger.setLevel(logging.INFO)
```
---
#### **324. How do you set up "golden signals" monitoring for Flask?**
**Answer:** Track:
1. **Traffic**: `requests_total` (counter)
2. **Errors**: `request_errors_total` (counter)
3. **Latency**: `request_duration_seconds` (histogram)
4. **Saturation**: `worker_utilization` (gauge)
*Implementation:*
```python
from prometheus_client import Counter, Histogram
REQUESTS = Counter('flask_http_requests_total', 'Total HTTP requests', ['method', 'endpoint'])
LATENCY = Histogram('flask_http_request_duration_seconds', 'Request duration', ['endpoint'])
@app.before_request
def before_request():
g.start = time.time()
@app.after_request
def after_request(response):
latency = time.time() - g.start
LATENCY.labels(request.path).observe(latency)
REQUESTS.labels(request.method, request.path).inc()
return response
```
---
#### **325. How do you configure "zero-downtime" deployments on Kubernetes?**
**Answer:**
```yaml
apiVersion: apps/v1
kind: Deployment
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 25%
maxUnavailable: 0 # Critical for zero downtime
template:
spec:
containers:
- name: flask
readinessProbe:
httpGet:
path: /ready
port: 5000
initialDelaySeconds: 5
periodSeconds: 5
```
---
#### **326. How do you implement "chaos engineering" tests for Flask?**
**Answer:** Use Chaos Toolkit:
```yaml
# experiment.yml
version: "1.0"
title: "Flask Resilience Test"
method:
- type: action
name: "inject-latency"
provider:
type: process
path: "tc"
arguments: "qdisc add dev eth0 root netem delay 1000ms"
- type: probe
name: "check-availability"
provider:
type: http
url: "http://flask-app:5000/health"
timeout: 30
- type: action
name: "restore-network"
provider:
type: process
path: "tc"
arguments: "qdisc del dev eth0 root netem"
```
---
#### **327. How do you configure "autoscaling" for Flask on GKE?**
**Answer:**
```yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: flask-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: flask-app
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: flask_http_request_duration_seconds
target:
type: AverageValue
averageValue: 100m # 100ms latency
```
---
#### **328. How do you implement "log-based metrics" in Google Cloud?**
**Answer:**
1. Create log-based metric in Cloud Logging:
- Name: `flask_errors`
- Filter: `resource.type="gae_app" jsonPayload.level="ERROR"`
2. Alert when:
- `Metric: flask_errors`
- `Condition: > 10 for 5 minutes`
---
#### **329. How do you configure "service mesh" for Flask microservices?**
**Answer:** Istio sidecar configuration:
```yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
spec:
hosts:
- flask-service
http:
- route:
- destination:
host: flask-service
subset: v1
weight: 90
- destination:
host: flask-service
subset: v2
weight: 10
retries:
attempts: 3
perTryTimeout: 2s
```
---
#### **330. How do you implement "database connection pooling" for serverless Flask?**
**Answer:** Use **RDS Proxy** for AWS Lambda:
```python
# In Lambda handler
def lambda_handler(event, context):
conn = pymysql.connect(
host=os.getenv('RDS_PROXY_ENDPOINT'),
user='lambda_user',
password=os.getenv('DB_PASSWORD'),
database='mydb',
cursorclass=pymysql.cursors.DictCursor
)
# Execute query...
```
*Configure RDS Proxy with IAM authentication*
---
#### **331. How do you set up "infrastructure as code" for Flask deployments?**
**Answer:** Terraform example:
```hcl
# main.tf
module "flask_app" {
source = "terraform-aws-modules/elastic-beanstalk-environment/aws"
application_name = "flask-app"
environment_name = "production"
solution_stack_name = "64bit Amazon Linux 2 v5.6.4 running Python 3.8"
setting = [
{
namespace = "aws:autoscaling:asg"
name = "MinSize"
value = "2"
},
{
namespace = "aws:elasticbeanstalk:application:environment"
name = "SECRET_KEY"
value = var.secret_key
}
]
}
```
---
#### **332. How do you implement "canary analysis" with Flagger?**
**Answer:**
```yaml
apiVersion: flagger.app/v1beta1
kind: Canary
spec:
analysis:
interval: 1m
threshold: 10
maxWeight: 50
stepWeight: 5
metrics:
- name: error-rate
thresholdRange:
max: 0.01
interval: 1m
- name: latency
thresholdRange:
max: 500
interval: 1m
```
---
#### **333. How do you configure "distributed tracing" with Jaeger?**
**Answer:**
```python
from jaeger_client import Config
def init_tracer():
config = Config(
config={
'sampler': {'type': 'const', 'param': 1},
'logging': True,
},
service_name='flask-app'
)
return config.initialize_tracer()
tracer = init_tracer()
@app.route('/traced')
def traced():
with tracer.start_span('web_request') as span:
span.set_tag('http.url', request.url)
# ...
```
---
#### **334. How do you implement "real-time performance monitoring" with Sentry?**
**Answer:**
```python
import sentry_sdk
from sentry_sdk.integrations.flask import FlaskIntegration
sentry_sdk.init(
dsn="https://example@sentry.io/0",
integrations=[FlaskIntegration()],
traces_sample_rate=0.1 # 10% of transactions
)
@app.route('/transaction')
def transaction():
with sentry_sdk.start_transaction(op="request", name="Custom Transaction"):
# ...
```
---
#### **335. How do you configure "log aggregation" with ELK Stack?**
**Answer:**
1. Filebeat config:
```yaml
filebeat.inputs:
- type: filestream
paths:
- /var/log/gunicorn.log
output.logstash:
hosts: ["logstash:5044"]
```
2. Logstash pipeline:
```
filter {
grok {
match => { "message" => "%{TIMESTAMP_ISO8601:timestamp} \[%{NUMBER:pid}\] %{LOGLEVEL:level} %{GREEDYDATA:msg}" }
}
}
```
---
#### **336. How do you implement "chaos monkey" for Flask?**
**Answer:** Randomly kill workers:
```python
import os
import random
@app.before_request
def chaos_monkey():
if random.random() < 0.01: # 1% chance
os._exit(1) # Simulate crash
```
*Better:* Use controlled chaos via service mesh (Istio fault injection)
---
#### **337. How do you configure "multi-region failover" on AWS?**
**Answer:**
1. Route53 latency-based routing
2. Global Application Load Balancer
3. Aurora Global Database (primary → secondary replication)
4. Health checks:
```python
@app.route('/health')
def health():
if not db.is_primary():
return "Read-only replica", 503
return "OK", 200
```
---
#### **338. How do you implement "real-time anomaly detection" for Flask metrics?**
**Answer:** Use Prometheus + ML:
1. Export metrics to Prometheus
2. Train model with PyOD:
```python
from pyod.models.knn import KNN
anomaly_detector = KNN()
anomaly_detector.fit(latency_data)
# In alert manager
if anomaly_detector.predict(new_latency) == 1:
trigger_alert()
```
---
#### **339. How do you configure "infrastructure monitoring" with Datadog?**
**Answer:**
1. Install Datadog agent:
```yaml
# datadog-agent.yaml
apiVersion: apps/v1
kind: DaemonSet
spec:
template:
spec:
containers:
- name: agent
image: datadog/agent:latest
env:
- name: DD_API_KEY
value: "<YOUR_API_KEY>"
```
2. Flask integration auto-discovers via service tags
---
#### **340. How do you implement "distributed configuration" with Consul?**
**Answer:**
```python
import consul
c = consul.Consul()
index, config = c.kv.get("flask/config", recurse=True)
app.config.update(
{item['Key'].split('/')[-1]: item['Value'] for item in config}
)
# Watch for changes
def watch_config():
index = None
while True:
index, data = c.kv.get("flask/config", index=index, recurse=True)
if data:
app.config.update(process_config(data))
Thread(target=watch_config).start()
```
---
#### **341. How do you configure "service discovery" for Flask microservices?**
**Answer:** Use Consul DNS:
```python
import dns.resolver
def get_service_url(service_name):
answers = dns.resolver.resolve(f'{service_name}.service.consul', 'A')
ip = random.choice(answers).to_text()
return f"http://{ip}:5000"
```
*Alternative:* Use `requests` with Consul template:
```bash
consul-template -template "template.ctmpl:service_url" -once
```
---
#### **342. How do you implement "blueprint-level metrics" in Prometheus?**
**Answer:**
```python
from prometheus_client import Counter
def create_blueprint(name):
bp = Blueprint(name, __name__)
counter = Counter(f'{name}_requests_total', 'Requests per blueprint')
@bp.before_request
def count_requests():
counter.inc()
return bp
# Usage
admin_bp = create_blueprint('admin')
```
---
#### **343. How do you configure "encrypted secrets" with HashiCorp Vault?**
**Answer:**
```python
import hvac
client = hvac.Client(url='http://vault:8200')
client.auth.approle.login(
role_id=os.environ['VAULT_ROLE_ID'],
secret_id=os.environ['VAULT_SECRET_ID']
)
secret = client.secrets.kv.v2.read_secret_version(
path='flask-secrets'
)['data']['data']
app.config['SECRET_KEY'] = secret['secret_key']
```
---
#### **344. How do you implement "real-time config reload" with etcd?**
**Answer:**
```python
import etcd3
client = etcd3.client()
watch_id = None
def watch_config():
global watch_id
watch_id = client.add_watch_callback(
'flask/config',
lambda events: update_config(events)
)
def update_config(events):
for event in events:
if isinstance(event, etcd3.events.PutEvent):
key = event.key.decode()
value = event.value.decode()
app.config[key] = value
watch_config()
```
---
#### **345. How do you configure "distributed tracing" with Zipkin?**
**Answer:**
```python
from flask import request
from py_zipkin.zipkin import zipkin_span, create_http_headers_for_new_span
@app.before_request
def trace_before():
headers = {k: v for k, v in request.headers if k.lower() in ('x-b3-traceid', 'x-b3-spanid', 'x-b3-parentspanid', 'x-b3-sampled')}
g.zipkin_trace_id = headers.get('x-b3-traceid', create_zipkin_id())
@zipkin_span(service_name='flask-app', span_name='web_request')
def traced_function():
# ...
@app.route('/traced')
def traced():
with traced_function():
# ...
```
---
#### **346. How do you implement "real-time error tracking" with Rollbar?**
**Answer:**
```python
import rollbar
from rollbar.contrib.flask import Rollbar
rollbar.init(
os.getenv('ROLLBAR_ACCESS_TOKEN'),
environment=os.getenv('FLASK_ENV', 'development')
)
@app.before_first_request
def init_rollbar():
Rollbar(app)
@app.route('/error')
def error():
raise Exception("Test error")
```
---
#### **347. How do you configure "infrastructure as code" with AWS CDK?**
**Answer:** Python CDK example:
```python
from aws_cdk import (
aws_ecs as ecs,
aws_ecs_patterns as ecs_patterns
)
class FlaskStack(cdk.Stack):
def __init__(self, scope: cdk.Construct, id: str, **kwargs) -> None:
super().__init__(scope, id, **kwargs)
flask_service = ecs_patterns.ApplicationLoadBalancedFargateService(
self, "FlaskFargateService",
image=ecs.ContainerImage.from_registry("my-flask-app:latest"),
memory_limit_mib=1024,
cpu=512
)
flask_service.target_group.configure_health_check(
path="/health"
)
```
---
#### **348. How do you implement "real-time log analysis" with Splunk?**
**Answer:**
1. Configure Flask logging:
```python
import splunk_hec_handler
handler = splunk_hec_handler.SplunkHecHandler(
host='splunk',
port=8088,
token=os.getenv('SPLUNK_TOKEN'),
index='main'
)
app.logger.addHandler(handler)
```
2. Create Splunk alerts for error patterns
---
#### **349. How do you configure "multi-cloud deployments" for Flask?**
**Answer:**
1. Abstract cloud services:
```python
class CloudStorage:
def __init__(self, provider):
if provider == 'aws':
self.client = boto3.client('s3')
elif provider == 'gcp':
self.client = storage.Client()
def upload(self, file):
# Provider-specific logic
```
2. Use feature flags to switch providers per environment
---
#### **350. How do you implement "real-time capacity planning" for Flask?**
**Answer:** Track metrics + predictive scaling:
```python
from sklearn.linear_model import LinearRegression
# Historical data: [timestamp, requests, cpu]
model = LinearRegression().fit(X_train, y_train)
def predict_load(minutes_ahead=10):
future_time = time.time() + minutes_ahead * 60
predicted_load = model.predict([[future_time]])
if predicted_load > current_capacity * 0.8:
trigger_scale_up()
```
---
#### **351. How do you configure "serverless Flask" with AWS API Gateway?**
**Answer:** Use `aws-wsgi` adapter:
```python
# lambda_handler.py
import aws_wsgi
from app import app
def lambda_handler(event, context):
return aws_wsgi.response(app, event, context)
```
*Deploy with:*
```yaml
# serverless.yml
functions:
app:
handler: lambda_handler.lambda_handler
events:
- http: ANY /
- http: 'ANY {proxy+}'
```
---
#### **352. How do you implement "real-time dependency tracking" for Flask?**
**Answer:**
```python
import requests
from prometheus_client import Gauge
DEPENDENCY_STATUS = Gauge('dependency_status', 'Dependency health', ['name'])
def check_dependency(name, url):
try:
requests.get(url, timeout=2)
DEPENDENCY_STATUS.labels(name).set(1)
except:
DEPENDENCY_STATUS.labels(name).set(0)
# In background thread
def monitor_dependencies():
while True:
check_dependency('db', 'http://db:5432/health')
check_dependency('redis', 'http://redis:6379/ping')
time.sleep(10)
```
---
#### **353. How do you configure "infrastructure monitoring" with New Relic?**
**Answer:**
```python
import newrelic.agent
newrelic.agent.initialize('newrelic.ini')
application = newrelic.agent.WSGIApplicationWrapper(app)
# In newrelic.ini
[newrelic]
license_key = YOUR_LICENSE_KEY
app_name = Flask Application
monitor_toolkit = true
transaction_tracer.enabled = true
```
---
#### **354. How do you implement "real-time feature flag analytics" with StatsD?**
**Answer:**
```python
import statsd
def is_feature_enabled(feature, user):
enabled = feature_flags.is_enabled(feature, user)
statsd.increment(f'feature.{feature}.{"enabled" if enabled else "disabled"}')
return enabled
```
*Visualize in Grafana:*
```
sum(rate(feature_my_feature_enabled[5m]))
/
sum(rate(feature_my_feature_total[5m]))
```
---
#### **355. How do you configure "distributed tracing" with Honeycomb?**
**Answer:**
```python
from honeycomb.opentelemetry import configure_opentelemetry
configure_opentelemetry(
service_name="flask-app",
write_key=os.getenv("HONEYCOMB_WRITEKEY"),
dataset="flask-traces"
)
# Auto-instruments Flask
```
---
#### **356. How do you implement "real-time canary analysis" with Prometheus?**
**Answer:**
```python
# In metrics
CANARY_REQUESTS = Counter('canary_requests_total', 'Canary requests', ['version'])
CANARY_ERRORS = Counter('canary_errors_total', 'Canary errors', ['version'])
@app.route('/canary')
def canary():
version = os.getenv('APP_VERSION')
CANARY_REQUESTS.labels(version).inc()
try:
# Test logic
except Exception as e:
CANARY_ERRORS.labels(version).inc()
raise
```
*Alert rule:*
```
rate(canary_errors_total{version="v2"}[5m])
/
rate(canary_requests_total{version="v2"}[5m])
>
0.01
```
---
#### **357. How do you configure "infrastructure as code" with Pulumi?**
**Answer:** Python example:
```python
import pulumi
from pulumi_aws import ec2, ecs, elbv2
# Create VPC
vpc = ec2.Vpc("flask-vpc", cidr_block="10.0.0.0/16")
# Create ECS cluster
cluster = ecs.Cluster("flask-cluster")
# Create load balancer
lb = elbv2.LoadBalancer("flask-lb",
subnets=[vpc.public_subnet_ids[0], vpc.public_subnet_ids[1]],
security_groups=[...]
)
# Create service
service = ecs.Service("flask-svc",
cluster=cluster.arn,
task_definition=task_definition.arn,
desired_count=2,
load_balancers=[{
"targetGroupArn": target_group.arn,
"containerName": "flask",
"containerPort": 5000
}]
)
```
---
#### **358. How do you implement "real-time anomaly detection" for error rates?**
**Answer:** Use Prophet forecasting:
```python
from fbprophet import Prophet
def detect_anomalies():
# Get last 7 days of error data
df = get_error_metrics()
# Train model
model = Prophet()
model.fit(df)
# Predict next hour
future = model.make_future_dataframe(periods=6, freq='H')
forecast = model.predict(future)
# Check if current error rate > upper bound
return current_error_rate > forecast['yhat_upper'].iloc[-1]
```
---
#### **359. How do you configure "infrastructure monitoring" with Sysdig?**
**Answer:**
1. Install Sysdig agent:
```yaml
apiVersion: apps/v1
kind: DaemonSet
spec:
template:
spec:
containers:
- name: sysdig-agent
image: sysdig/agent
env:
- name: ACCESS_KEY
value: "<YOUR_ACCESS_KEY>"
```
2. Create alert rules for Flask-specific metrics
---
#### **360. How do you implement "real-time capacity forecasting" for database?**
**Answer:**
```python
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
def forecast_db_growth():
# Historical data: date, size_mb
model = ARIMA(df['size_mb'], order=(1,1,0))
results = model.fit()
forecast = results.forecast(steps=30) # 30 days
if forecast.iloc[-1] > current_capacity * 0.9:
trigger_resize()
```
---
#### **361. How do you configure "distributed tracing" with Lightstep?**
**Answer:**
```python
from opentelemetry import trace
from opentelemetry.exporter.lightstep import LightstepOTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
trace.set_tracer_provider(TracerProvider())
trace.get_tracer_provider().add_span_processor(
BatchSpanProcessor(
LightstepOTLPSpanExporter(
access_token=os.getenv("LIGHTSTEP_ACCESS_TOKEN")
)
)
)
# Auto-instruments Flask
```
---
#### **362. How do you implement "real-time feature flag rollback"?**
**Answer:**
```python
from ldclient import get()
@app.route('/flags/<flag_key>/rollback', methods=['POST'])
@require_admin
def rollback_flag(flag_key):
flag = get().variation_detail(flag_key, None, None)
if flag.value == "v2":
get().variation(flag_key, None, "v1") # Rollback to v1
statsd.increment(f'flag.{flag_key}.rollback')
return "Rolled back", 200
return "Already on v1", 200
```
---
#### **363. How do you configure "infrastructure monitoring" with Netdata?**
**Answer:**
1. Install Netdata agent:
```bash
docker run -d --name=netdata \
-p 19999:19999 \
-v /proc:/host/proc:ro \
-v /sys:/host/sys:ro \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
netdata/netdata
```
2. Configure Flask-specific alerts in `health.d/python.conf`:
```
alarm: flask_high_latency
on: flask_http_request_duration_seconds
units: seconds
info: High request latency
warn: $this > 1
crit: $this > 2
```
---
#### **364. How do you implement "real-time dependency health checks"?**
**Answer:**
```python
from flask import Blueprint
health_bp = Blueprint('health', __name__)
@health_bp.route('/dependencies')
def dependencies():
results = {}
for name, check in DEPENDENCY_CHECKS.items():
try:
results[name] = {"status": "ok", "data": check()}
except Exception as e:
results[name] = {"status": "error", "message": str(e)}
overall = "ok" if all(r["status"] == "ok" for r in results.values()) else "error"
return jsonify(status=overall, dependencies=results), 200 if overall == "ok" else 503
```
---
#### **365. How do you configure "infrastructure as code" with Ansible?**
**Answer:**
```yaml
# deploy.yml
- name: Deploy Flask app
hosts: webservers
vars:
app_version: "1.2.3"
tasks:
- name: Install dependencies
apt:
name: "{{ packages }}"
vars:
packages:
- python3-pip
- gunicorn
- name: Deploy app
unarchive:
src: "https://s3.amazonaws.com/flask-app/{{ app_version }}.zip"
dest: /opt/flask-app
remote_src: yes
- name: Start Gunicorn
systemd:
name: flask-app
state: restarted
daemon_reload: yes
```
---
#### **366. How do you implement "real-time canary analysis" with Grafana ML?**
**Answer:**
1. Store metrics in Prometheus
2. Create Grafana ML panel:
- **Algorithm**: Prophet
- **Forecast horizon**: 1h
- **Anomaly threshold**: 2 standard deviations
3. Alert when:
```
| actual - predicted | > threshold
```
---
#### **367. How do you configure "distributed tracing" with Instana?**
**Answer:**
```python
# Automatically instruments Flask when INSTANA_AGENT_KEY is set
import instana
# Environment variables:
# INSTANA_AGENT_KEY=YOUR_KEY
# INSTANA_SERVICE_NAME=flask-app
# INSTANA_ZONE=production
```
---
#### **368. How do you implement "real-time infrastructure cost monitoring"?**
**Answer:**
```python
import boto3
def get_daily_cost():
client = boto3.client('ce')
response = client.get_cost_and_usage(
TimePeriod={
'Start': (datetime.today() - timedelta(days=1)).strftime('%Y-%m-%d'),
'End': datetime.today().strftime('%Y-%m-%d')
},
Granularity='DAILY',
Metrics=['AmortizedCost'],
GroupBy=[{'Type': 'DIMENSION', 'Key': 'SERVICE'}]
)
return response['ResultsByTime'][0]['Groups']
@app.route('/cost')
def cost():
return jsonify(get_daily_cost())
```
---
#### **369. How do you configure "infrastructure monitoring" with Grafana Cloud?**
**Answer:**
1. Add remote write to `prometheus.yml`:
```yaml
remote_write:
- url: "https://prometheus-us-central1.grafana.net/api/prom/push"
basic_auth:
username: YOUR_INSTANCE_ID
password: YOUR_API_KEY
```
2. Configure Flask metrics as in Q324
---
#### **370. How do you implement "real-time feature impact analysis"?**
**Answer:**
```python
from statsmodels.stats.proportion import proportions_ztest
def analyze_feature_impact(feature, metric, variant="B"):
# Get data for control (A) and variant (B)
a_data = get_metric_data(feature, "A", metric)
b_data = get_metric_data(feature, variant, metric)
# Z-test for proportions
count = [sum(a_data), sum(b_data)]
nobs = [len(a_data), len(b_data)]
z_stat, p_value = proportions_ztest(count, nobs)
return {
"p_value": p_value,
"significant": p_value < 0.05,
"effect_size": (b_data.mean() - a_data.mean()) / a_data.std()
}
```
---
#### **371. How do you configure "serverless tracing" with AWS X-Ray for Lambda?**
**Answer:**
```python
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
# In Lambda handler
def lambda_handler(event, context):
xray_recorder.configure(service='Flask Lambda')
XRayMiddleware(app, xray_recorder)
# Manual subsegment for cold start detection
with xray_recorder.in_subsegment('cold_start_check'):
if context.get_remaining_time_in_millis() > 90000:
xray_recorder.put_annotation('cold_start', True)
return Mangum(app)(event, context)
```
---
#### **372. How do you implement "real-time database load forecasting"?**
**Answer:**
```python
from sklearn.ensemble import RandomForestRegressor
def forecast_db_load():
# Features: hour_of_day, day_of_week, recent_load
X, y = get_historical_data()
model = RandomForestRegressor()
model.fit(X, y)
# Predict next hour
next_hour = get_next_hour_features()
predicted_load = model.predict([next_hour])[0]
if predicted_load > MAX_CONNECTIONS * 0.8:
trigger_read_replicas()
```
---
#### **373. How do you configure "infrastructure as code" with Terraform Cloud?**
**Answer:**
1. Create `main.tf`:
```hcl
terraform {
cloud {
organization = "my-org"
workspaces {
name = "flask-production"
}
}
}
module "flask" {
source = "git::https://github.com/my-org/terraform-flask.git?ref=v1.0.0"
env = "prod"
}
```
2. Set secrets in Terraform Cloud workspace variables
---
#### **374. How do you implement "real-time anomaly detection" for user behavior?**
**Answer:**
```python
from sklearn.ensemble import IsolationForest
def detect_anomalous_users():
# Features: request_count, error_rate, session_duration
X = get_user_behavior_data()
model = IsolationForest(contamination=0.01)
model.fit(X)
anomalies = model.predict(X)
return User.query.filter(User.id.in_(anomalies == -1)).all()
```
---
#### **375. How do you configure "distributed tracing" with Signalfx?**
**Answer:**
```python
from signalfx_tracing import auto_instrument
auto_instrument()
# Environment variables:
# SIGNALFX_ACCESS_TOKEN=YOUR_TOKEN
# SIGNALFX_SERVICE_NAME=flask-app
# SIGNALFX_TRACING_ENABLED=true
```
---
#### **376. How do you implement "real-time canary analysis" with Keptn?**
**Answer:**
1. Define quality gates in `slo.yaml`:
```yaml
spec_version: '1.0'
comparison:
compare_with: "single_result"
include_result_with_score: "pass"
number_of_comparison_results: 1
objectives:
- sli: "error_rate"
key_sli: false
pass: [ { "criteria": [ "<=+10%" ] } ]
warning: [ { "criteria": [ "<=800ms" ] } ]
```
2. Trigger evaluation after canary deployment
---
#### **377. How do you configure "infrastructure monitoring" with LogicMonitor?**
**Answer:**
1. Install LogicMonitor collector
2. Create Python script datasource:
```python
import requests
from logicmonitor_sdk import Collector
def get_flask_metrics():
resp = requests.get("http://localhost:5000/metrics")
return {
"request_rate": resp.json()["requests_per_sec"],
"error_rate": resp.json()["errors_per_sec"]
}
Collector().send(get_flask_metrics())
```
---
#### **378. How do you implement "real-time feature flag impact analysis"?**
**Answer:**
```python
def analyze_flag_impact(flag, metric):
# Get data for enabled/disabled groups
enabled = get_metric_data(flag, enabled=True, metric=metric)
disabled = get_metric_data(flag, enabled=False, metric=metric)
# T-test for means
t_stat, p_value = ttest_ind(enabled, disabled)
return {
"p_value": p_value,
"significant": p_value < 0.05,
"lift": (enabled.mean() - disabled.mean()) / disabled.mean()
}
```
---
#### **379. How do you configure "distributed tracing" with Datadog APM?**
**Answer:**
```python
from ddtrace import tracer
@tracer.wrap(name="custom_operation", service="flask-app")
def process_data():
# ...
@app.route('/traced')
def traced():
with tracer.trace("web_request"):
process_data()
return "Done"
```
*Environment:*
```bash
DD_SERVICE=flask-app
DD_ENV=production
DD_TRACE_AGENT_URL=http://datadog:8126
```
---
#### **380. How do you implement "real-time infrastructure cost optimization"?**
**Answer:**
```python
def optimize_costs():
# Get current utilization
cpu_util = get_cpu_utilization()
mem_util = get_memory_utilization()
# Check if over-provisioned
if cpu_util < 0.3 and mem_util < 0.4:
current_size = get_instance_size()
next_size = DOWNSCALE_MAP.get(current_size)
if next_size:
trigger_resize(next_size)
# Check for idle resources
if get_request_count(last_hour=1) == 0:
trigger_suspend()
```
---
#### **381. How do you configure "serverless Flask" with Google Cloud Run?**
**Answer:**
1. `Dockerfile`:
```dockerfile
FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD exec gunicorn --bind :$PORT --workers 1 --threads 8 --timeout 0 app:app
```
2. Deploy:
```bash
gcloud run deploy flask-app \
--image gcr.io/project-id/flask-app \
--platform managed \
--region us-central1 \
--allow-unauthenticated
```
---
#### **382. How do you implement "real-time dependency vulnerability scanning"?**
**Answer:**
```python
import requests
def scan_dependencies():
deps = get_requirements()
response = requests.post(
"https://api.snyk.io/test",
json={"dependencies": deps},
headers={"Authorization": f"token {SNYK_TOKEN}"}
)
return response.json()["vulnerabilities"]
@app.route('/vulnerabilities')
@require_admin
def vulnerabilities():
return jsonify(scan_dependencies())
```
---
#### **383. How do you configure "infrastructure as code" with Crossplane?**
**Answer:**
```yaml
apiVersion: database.example.org/v1alpha1
kind: PostgreSQLInstance
metadata:
name: flask-db
spec:
parameters:
storageGB: 20
engineVersion: "12"
writeConnectionSecretToRef:
name: flask-db-conn
---
apiVersion: compute.example.org/v1alpha1
kind: Deployment
metadata:
name: flask-app
spec:
template:
spec:
containers:
- name: flask
image: flask-app:1.0
env:
- name: DB_HOST
valueFrom:
secretKeyRef:
name: flask-db-conn
key: host
```
---
#### **384. How do you implement "real-time user behavior clustering"?**
**Answer:**
```python
from sklearn.cluster import KMeans
def cluster_users():
# Features: session_duration, page_views, conversion
X = get_user_features()
model = KMeans(n_clusters=3)
clusters = model.fit_predict(X)
# Assign clusters to users
for user, cluster in zip(User.query.all(), clusters):
user.behavior_cluster = cluster
db.session.commit()
```
---
#### **385. How do you configure "distributed tracing" with Jaeger in Kubernetes?**
**Answer:**
1. Deploy Jaeger operator:
```bash
kubectl create -f https://raw.githubusercontent.com/jaegertracing/jaeger-operator/master/deploy/crds/jaegertracing.io_jaegers_crd.yaml
```
2. Create Jaeger instance:
```yaml
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
name: flask-jaeger
spec:
strategy: production
collector:
options:
log-level: info
```
3. Configure Flask as in Q333
---
#### **386. How do you implement "real-time feature flag risk assessment"?**
**Answer:**
```python
def assess_flag_risk(flag):
# Factors: user impact, error rate, business criticality
user_impact = get_affected_users(flag) / total_users()
error_rate = get_error_rate(flag)
criticality = FEATURE_CRITICALITY.get(flag, 1.0)
# Risk score (0-10)
risk = min(10, (user_impact * 5) + (error_rate * 30) + (criticality * 2))
return {
"risk_score": risk,
"high_risk": risk > 7,
"factors": {
"user_impact": user_impact,
"error_rate": error_rate,
"criticality": criticality
}
}
```
---
#### **387. How do you configure "infrastructure monitoring" with Prometheus Operator?**
**Answer:**
```yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: flask-monitor
spec:
selector:
matchLabels:
app: flask-app
endpoints:
- port: web
interval: 15s
path: /metrics
---
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: flask-alerts
spec:
groups:
- name: flask
rules:
- alert: HighErrorRate
expr: rate(flask_http_request_errors_total[5m]) / rate(flask_http_requests_total[5m]) > 0.05
for: 10m
labels:
severity: critical
```
---
#### **388. How do you implement "real-time capacity planning" for Redis?**
**Answer:**
```python
def forecast_redis_usage():
# Get historical memory usage
timestamps, usage = get_redis_memory_history()
# Linear regression
model = LinearRegression().fit(
np.array(timestamps).reshape(-1, 1),
usage
)
# Predict when 80% capacity is reached
current = get_redis_memory()
capacity = get_redis_maxmemory()
days_to_full = (capacity * 0.8 - current) / model.coef_[0]
if days_to_full < 7:
trigger_resize()
```
---
#### **389. How do you configure "distributed tracing" with OpenTelemetry Collector?**
**Answer:**
1. `otel-collector.yaml`:
```yaml
receivers:
otlp:
protocols:
grpc:
http:
exporters:
jaeger:
endpoint: "jaeger:14250"
logging:
service:
pipelines:
traces:
receivers: [otlp]
exporters: [jaeger, logging]
```
2. Flask configuration as in Q201
---
#### **390. How do you implement "real-time feature flag compliance checks"?**
**Answer:**
```python
def check_compliance(flag):
# Check against regulatory requirements
requirements = get_regulatory_requirements()
violations = []
for req in requirements:
if req.applies_to(flag) and not req.is_satisfied(flag):
violations.append({
"requirement": req.id,
"description": req.description
})
return {
"compliant": len(violations) == 0,
"violations": violations
}
```
---
#### **391. How do you configure "infrastructure as code" with AWS SAM?**
**Answer:**
```yaml
# template.yaml
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
FlaskFunction:
Type: AWS::Serverless::Function
Properties:
CodeUri: app/
Handler: lambda_handler.lambda_handler
Runtime: python3.9
Events:
Api:
Type: Api
Properties:
Path: /{proxy+}
Method: ANY
Environment:
Variables:
SECRET_KEY: !Ref SecretKey
Tracing: Active
SecretKey:
Type: AWS::SSM::Parameter
Properties:
Type: SecureString
Value: !Ref SecretKeyValue
```
---
#### **392. How do you implement "real-time anomaly detection" for API usage?**
**Answer:**
```python
from sklearn.covariance import EllipticEnvelope
def detect_anomalous_api_usage():
# Features: requests_per_min, endpoints_used, user_agents
X = get_api_usage_data()
model = EllipticEnvelope(contamination=0.01)
model.fit(X)
anomalies = model.predict(X)
return APIKey.query.filter(APIKey.id.in_(anomalies == -1)).all()
```
---
#### **393. How do you configure "distributed tracing" with AWS X-Ray for ECS?**
**Answer:**
1. Add X-Ray daemon sidecar:
```yaml
# task-definition.json
"containerDefinitions": [
{
"name": "xray-daemon",
"image": "amazon/aws-xray-daemon",
"cpu": 32,
"memory": 256,
"portMappings": [{
"containerPort": 2000,
"protocol": "udp"
}]
},
{
"name": "flask-app",
"image": "flask-app:latest",
"environment": [{
"name": "AWS_XRAY_DAEMON_ADDRESS",
"value": "xray-daemon:2000"
}]
}
]
```
2. Configure Flask as in Q304
---
#### **394. How do you implement "real-time feature flag dependency analysis"?**
**Answer:**
```python
def analyze_flag_dependencies(flag):
# Get all flags used in same code paths
dependencies = set()
for endpoint in get_endpoints_using_flag(flag):
for other_flag in get_flags_in_endpoint(endpoint):
if other_flag != flag:
dependencies.add(other_flag)
# Calculate impact score
impact = 0
for dep in dependencies:
impact += get_affected_users(dep) * FLAG_CRITICALITY[dep]
return {
"dependencies": list(dependencies),
"impact_score": impact,
"high_impact": impact > 1000
}
```
---
#### **395. How do you configure "infrastructure monitoring" with Sysdig Secure?**
**Answer:**
1. Install Sysdig agent with policy:
```yaml
apiVersion: apps/v1
kind: DaemonSet
spec:
template:
spec:
containers:
- name: sysdig-agent
env:
- name: SECURE_POLICY_FILE
value: |
- name: Flask Security Policy
description: Security rules for Flask apps
rules:
- rule: "Flask Admin Access"
condition: kubernetes.pod.name matches "flask-*" and proc.name = "flask" and fd.name = "/admin"
actions:
- log
- alert
```
---
#### **396. How do you implement "real-time database schema drift detection"?**
**Answer:**
```python
def detect_schema_drift():
# Get current schema
current_schema = get_db_schema()
# Compare with golden schema
with open('golden_schema.json') as f:
golden_schema = json.load(f)
drift = []
for table in golden_schema:
if table not in current_schema:
drift.append(f"Missing table: {table}")
continue
for column in golden_schema[table]:
if column not in current_schema[table]:
drift.append(f"Missing column: {table}.{column}")
if drift:
send_alert(f"Schema drift detected: {drift}")
return drift
```
---
#### **397. How do you configure "distributed tracing" with Azure Application Insights?**
**Answer:**
```python
from opencensus.ext.azure.trace_exporter import AzureExporter
from opencensus.trace.samplers import ProbabilitySampler
from opencensus.trace.tracer import Tracer
tracer = Tracer(
exporter=AzureExporter(
instrumentation_key=os.getenv('APPINSIGHTS_INSTRUMENTATIONKEY')
),
sampler=ProbabilitySampler(1.0)
)
@app.route('/traced')
def traced():
with tracer.span(name="web_request"):
# ...
```
---
#### **398. How do you implement "real-time infrastructure compliance checks"?**
**Answer:**
```python
def check_infra_compliance():
checks = [
SecurityCheck(
name="SSH Restriction",
description="SSH only from bastion",
check=lambda: get_security_groups().all(sg.ports_open('22') == {'bastion'})
),
SecurityCheck(
name="Encryption at Rest",
description="All databases encrypted",
check=lambda: get_databases().all(db.encrypted)
)
]
results = [check.run() for check in checks]
return {
"compliant": all(r.passed for r in results),
"results": [r.to_dict() for r in results]
}
```
---
#### **399. How do you configure "serverless Flask" with Azure Functions?**
**Answer:**
1. `function_app/__init__.py`:
```python
import azure.functions as func
from flask import Flask
app = Flask(__name__)
@app.route('/')
def home():
return "Hello from Flask!"
def main(req: func.HttpRequest) -> func.HttpResponse:
return func.WsgiMiddleware(app).handle(req, None)
```
2. `host.json`:
```json
{
"version": "2.0",
"extensions": {
"http": {
"routePrefix": ""
}
}
}
```
---
#### **400. How do you implement "real-time cost anomaly detection" for cloud resources?**
**Answer:**
```python
from sklearn.ensemble import IsolationForest
def detect_cost_anomalies():
# Features: daily_cost, resource_count, usage_hours
X = get_historical_costs()
model = IsolationForest(contamination=0.05)
model.fit(X)
anomalies = model.predict(X)
current_cost = get_current_cost()
if anomalies[-1] == -1 and current_cost > X['cost'].mean() * 2:
trigger_investigation()
return anomalies[-1] == -1
```
---
**Part 5 (Questions 401–500) is the final installment!**