# **Part 5: Specialized Web Scraping – Social Media, Mobile Apps, Dark Web, and Advanced Data Extraction**
**Duration:** ~60 minutes
**Hashtags:** #SocialMediaScraping #MobileScraping #DarkWeb #FinancialData #MediaExtraction #AuthScraping #ScrapingSaaS #APIReverseEngineering #EthicalScraping #DataScience
---
## **Table of Contents**
1. [Advanced Social Media Scraping with API Reverse Engineering](#social-media-scraping)
2. [Mobile App Scraping and Reverse Engineering](#mobile-app-scraping)
3. [Dark Web Data Extraction (Ethical Considerations)](#dark-web-extraction)
4. [Real-Time Financial Data Scraping](#financial-data-scraping)
5. [Image and Video Content Extraction at Scale](#media-content-extraction)
6. [Scraping Behind Complex Authentication Systems](#complex-auth-scraping)
7. [Building Scraping-as-a-Service Platforms](#scraping-saas)
8. [Quiz: Specialized Scraping Mastery](#specialized-quiz)
9. [Conclusion and Future of Web Scraping](#part5-conclusion)
---
## **1. Advanced Social Media Scraping with API Reverse Engineering** 📱
Social media platforms present unique challenges with their sophisticated anti-scraping measures and constantly changing APIs.
### **The Social Media Scraping Landscape**
#### **Platform-Specific Challenges**
| Platform | Key Challenges | Data Value |
|----------|----------------|------------|
| **Facebook** | Graph API restrictions, complex authentication, shadow banning | User behavior, page insights, ad data |
| **Twitter/X** | Rate limits, API costs, real-time streaming complexity | Public sentiment, trending topics, influencer data |
| **Instagram** | App-only API, image-heavy content, strict rate limits | Visual trends, influencer marketing, engagement metrics |
| **LinkedIn** | Strict ToS, complex authentication, professional data sensitivity | Professional networks, job market trends, company insights |
| **TikTok** | Mobile-first API, sophisticated anti-bot measures | Viral content, emerging trends, youth demographics |
### **API Reverse Engineering Techniques**
#### **1. Network Traffic Analysis**
```python
# network_analysis.py
import mitmproxy.http
from mitmproxy import ctx
import json
import re
class SocialMediaAnalyzer:
def __init__(self):
self.endpoints = {}
self.auth_tokens = {}
self.request_patterns = {}
def request(self, flow: mitmproxy.http.HTTPFlow):
"""Process outgoing requests"""
url = flow.request.pretty_url
headers = dict(flow.request.headers)
method = flow.request.method
# Extract platform from URL
platform = self._identify_platform(url)
if not platform:
return
# Track endpoints
self._track_endpoint(platform, url, method)
# Extract authentication tokens
self._extract_auth_tokens(platform, headers)
# Log request patterns
self._log_request_pattern(platform, url, flow.request.content)
def response(self, flow: mitmproxy.http.HTTPFlow):
"""Process incoming responses"""
url = flow.request.pretty_url
platform = self._identify_platform(url)
if not platform:
return
# Analyze response structure
self._analyze_response_structure(platform, flow.response.content)
# Detect anti-scraping measures
self._detect_anti_scraping_measures(platform, flow.response)
def _identify_platform(self, url):
"""Identify social media platform from URL"""
patterns = {
'facebook': r'facebook\.com|graph\.facebook\.com',
'twitter': r'twitter\.com|api\.twitter\.com',
'instagram': r'instagram\.com|i\.instagram\.com',
'linkedin': r'linkedin\.com|api\.linkedin\.com',
'tiktok': r'tiktok\.com|api2\.musical\.ly|api-t2\.musical\.ly'
}
for platform, pattern in patterns.items():
if re.search(pattern, url):
return platform
return None
def _track_endpoint(self, platform, url, method):
"""Track API endpoints and their usage patterns"""
if platform not in self.endpoints:
self.endpoints[platform] = {}
# Normalize URL (remove IDs, etc.)
normalized = re.sub(r'/\d+/', '/{id}/', url)
normalized = re.sub(r'\?[\w=&]+', '', normalized)
if normalized not in self.endpoints[platform]:
self.endpoints[platform][normalized] = {
'method': method,
'count': 0,
'last_seen': None
}
self.endpoints[platform][normalized]['count'] += 1
self.endpoints[platform][normalized]['last_seen'] = time.time()
def _extract_auth_tokens(self, platform, headers):
"""Extract authentication tokens from headers"""
tokens = {}
# Facebook/Instagram
if 'x-fb-http-engine' in headers:
tokens['fb_dtsg'] = self._extract_fb_dtsg(headers.get('cookie', ''))
tokens['jazoest'] = self._extract_jazoest(headers.get('cookie', ''))
# Twitter
if 'x-csrf-token' in headers:
tokens['csrf_token'] = headers['x-csrf-token']
# TikTok
if 'x-tt-token' in headers:
tokens['tt_token'] = headers['x-tt-token']
if tokens:
self.auth_tokens[platform] = tokens
def _extract_fb_dtsg(self, cookie):
"""Extract Facebook DTSG token from cookie"""
match = re.search(r'\"dtsg\":\{\""token\"":\""([^"]+)\""}', cookie)
return match.group(1) if match else None
def _extract_jazoest(self, cookie):
"""Extract Facebook jazoest token"""
match = re.search(r'jazoest=(\d+)', cookie)
return match.group(1) if match else None
def _log_request_pattern(self, platform, url, content):
"""Log patterns in request content"""
if not content:
return
try:
# Try parsing as JSON
data = json.loads(content)
self._analyze_json_structure(platform, data)
except:
# Analyze as form data
self._analyze_form_data(platform, content)
def _analyze_json_structure(self, platform, data):
"""Analyze JSON request structure"""
if platform not in self.request_patterns:
self.request_patterns[platform] = {
'fields': {},
'endpoints': {}
}
# Track fields used in requests
for key in data.keys():
self.request_patterns[platform]['fields'][key] = (
self.request_patterns[platform]['fields'].get(key, 0) + 1
)
def _analyze_response_structure(self, platform, content):
"""Analyze API response structure"""
try:
data = json.loads(content)
# Track common response patterns
# Implementation would extract schema patterns
except:
pass
def _detect_anti_scraping_measures(self, platform, response):
"""Detect anti-scraping measures in responses"""
# Check for CAPTCHA responses
if b'captcha' in response.content.lower():
ctx.log.info(f"{platform}: CAPTCHA detected")
# Check for rate limiting
if response.status_code == 429:
ctx.log.info(f"{platform}: Rate limit hit")
# Extract retry-after header
retry_after = response.headers.get('retry-after')
if retry_after:
ctx.log.info(f"{platform}: Retry after {retry_after} seconds")
# Check for shadow banning indicators
if platform == 'twitter' and response.status_code == 200:
try:
data = json.loads(response.content)
if 'timeline' in data and not data['timeline'].get('instructions'):
ctx.log.info("Twitter: Possible shadow ban - empty timeline")
except:
pass
def get_api_map(self):
"""Generate API map for a platform"""
return {
'endpoints': self.endpoints,
'auth_tokens': self.auth_tokens,
'request_patterns': self.request_patterns
}
# Usage with mitmproxy
# Run with: mitmproxy -s network_analysis.py
```
### **Platform-Specific Scraping Strategies**
#### **1. Twitter/X API Reverse Engineering**
```python
# twitter_api.py
import requests
import json
import time
import random
from datetime import datetime
class TwitterAPI:
def __init__(self, cookies=None, proxy=None):
self.session = requests.Session()
self.proxy = proxy
# Twitter API endpoints (from reverse engineering)
self.endpoints = {
'guest_token': 'https://api.twitter.com/1.1/guest/activate.json',
'user_tweets': 'https://api.twitter.com/2/timeline/profile/{user_id}.json',
'search': 'https://api.twitter.com/2/search/adaptive.json',
'tweet_details': 'https://api.twitter.com/2/timeline/conversation/{tweet_id}.json'
}
# Required headers
self.headers = {
'authorization': 'Bearer AAAAAAAAAAAAAAAAAAAAANRILgAAAAAAnNwIzUejRCOuH5E6I8xnZz4puTs%3D1Zv7ttfk8LF81IUq16cHjhLTvJu4FA33AGWWjCpTnA',
'x-guest-token': '',
'x-twitter-auth-type': 'OAuth2Session',
'x-twitter-active-user': 'yes',
'x-twitter-client-language': 'en',
'content-type': 'application/json'
}
# Query parameters
self.params = {
'user_tweets': {
'include_profile_interstitial_type': '1',
'include_blocking': '1',
'include_blocked_by': '1',
'include_followed_by': '1',
'include_want_retweets': '1',
'include_mute_edge': '1',
'include_can_dm': '1',
'include_can_media_tag': '1',
'skip_status': '1',
'cards_platform': 'Web-12',
'include_cards': '1',
'include_ext_alt_text': 'true',
'include_quote_count': 'true',
'include_reply_count': '1',
'tweet_mode': 'extended',
'include_entities': 'true',
'include_user_entities': 'true',
'include_ext_media_color': 'true',
'include_ext_media_availability': 'true',
'send_error_codes': 'true',
'simple_quoted_tweets': 'false',
'count': '20',
'ext': 'mediaStats,highlightedLabel'
},
'search': {
'q': '',
'product': 'Latest',
'count': '20',
'include_entities': 'true',
'tweet_mode': 'extended',
'simple_quoted_tweets': 'false',
'spelling_corrections': '1',
'ext': 'mediaStats,highlightedLabel'
}
}
# Get guest token
self._get_guest_token()
# Add cookies if provided
if cookies:
self.session.cookies.update(cookies)
def _get_guest_token(self):
"""Get guest token for API requests"""
response = self.session.post(
self.endpoints['guest_token'],
headers={
'authorization': self.headers['authorization']
},
proxies=self.proxy
)
if response.status_code == 200:
guest_token = response.json()['guest_token']
self.headers['x-guest-token'] = guest_token
return guest_token
raise Exception(f"Failed to get guest token: {response.status_code}")
def _refresh_guest_token(self):
"""Refresh guest token when expired"""
time.sleep(1)
return self._get_guest_token()
def _make_request(self, endpoint, params=None, json_data=None, method='GET'):
"""Make authenticated API request"""
try:
if method == 'GET':
response = self.session.get(
endpoint,
headers=self.headers,
params=params,
proxies=self.proxy
)
else:
response = self.session.post(
endpoint,
headers=self.headers,
params=params,
json=json_data,
proxies=self.proxy
)
# Handle rate limiting
if response.status_code == 429:
retry_after = int(response.headers.get('x-rate-limit-reset', 60))
time.sleep(retry_after + 5)
return self._make_request(endpoint, params, json_data, method)
# Handle guest token expiration
if 'errors' in response.text and 'guest token' in response.text.lower():
self._refresh_guest_token()
return self._make_request(endpoint, params, json_data, method)
response.raise_for_status()
return response.json()
except Exception as e:
print(f"API request failed: {str(e)}")
raise
def get_user_id(self, username):
"""Get user ID from username (requires authenticated session)"""
# This would typically require an authenticated session
# Implementation varies based on Twitter's current API structure
pass
def get_user_tweets(self, user_id, count=20):
"""Get tweets from a user's profile"""
endpoint = self.endpoints['user_tweets'].format(user_id=user_id)
params = self.params['user_tweets'].copy()
params['count'] = str(count)
return self._make_request(endpoint, params=params)
def search_tweets(self, query, count=20):
"""Search for tweets matching a query"""
params = self.params['search'].copy()
params['q'] = query
params['count'] = str(count)
return self._make_request(self.endpoints['search'], params=params)
def get_tweet_details(self, tweet_id):
"""Get details for a specific tweet"""
endpoint = self.endpoints['tweet_details'].format(tweet_id=tweet_id)
params = {
'include_conversation_info': 'true',
'include_profile_interstitial_type': '1',
'include_blocking': '1',
'include_blocked_by': '1',
'include_followed_by': '1',
'include_want_retweets': '1',
'include_mute_edge': '1',
'include_can_dm': '1',
'include_can_media_tag': '1',
'skip_status': '1',
'cards_platform': 'Web-12',
'include_cards': '1',
'include_ext_alt_text': 'true',
'include_quote_count': 'true',
'include_reply_count': '1',
'tweet_mode': 'extended',
'include_entities': 'true',
'include_user_entities': 'true',
'include_ext_media_color': 'true',
'include_ext_media_availability': 'true',
'send_error_codes': 'true',
'simple_quoted_tweets': 'false',
'count': '20',
'ext': 'mediaStats,highlightedLabel'
}
return self._make_request(endpoint, params=params)
def extract_tweet_data(self, tweet_json):
"""Extract structured data from tweet JSON"""
# Implementation would parse Twitter's complex response structure
pass
```
#### **2. Instagram Mobile API Scraping**
```python
# instagram_api.py
import requests
import json
import time
import re
from urllib.parse import urlparse, parse_qs
class InstagramAPI:
def __init__(self, cookies=None, proxy=None):
self.session = requests.Session()
self.proxy = proxy
self.device_id = self._generate_device_id()
# Instagram API endpoints
self.endpoints = {
'login': 'https://i.instagram.com/api/v1/accounts/login/',
'user_id': 'https://i.instagram.com/api/v1/users/{username}/usernameinfo/',
'user_feed': 'https://i.instagram.com/api/v1/feed/user/{user_id}/',
'post_details': 'https://i.instagram.com/api/v1/media/{media_id}/info/',
'search_users': 'https://i.instagram.com/api/v1/users/search/?query={query}&count=50'
}
# Required headers
self.headers = {
'user-agent': self._get_ig_user_agent(),
'x-ig-capabilities': '3brTvw==',
'x-ig-connection-type': 'WIFI',
'x-ig-app-id': '567067343352427',
'x-ig-www-claim': 'hmac.AR2Fvp7vD8dH2J6-8i8iG5QjG0JdY0pYJZ2Z3Q1e5b6c7d8e',
'accept-language': 'en-US',
'accept-encoding': 'gzip, deflate',
'x-fb-http-engine': 'Liger'
}
# Add cookies if provided
if cookies:
self.session.cookies.update(cookies)
def _generate_device_id(self):
"""Generate Instagram device ID"""
return f"android-{random.randint(0, 1e12):x}:{int(time.time())}"
def _get_ig_user_agent(self):
"""Generate Instagram-compatible User-Agent"""
versions = [
'192.168.3.11.123',
'192.168.3.11.125',
'192.168.3.11.129',
'234.1.0.0.132'
]
return (
f"Instagram {random.choice(versions)} Android "
"(29/10; 560dpi; 1440x2891; samsung; SM-G975F; "
"star2qltesq; exynos9820; en_US; 361658937)"
)
def _make_request(self, endpoint, params=None, data=None, method='GET'):
"""Make authenticated API request"""
# Add common parameters
if params is None:
params = {}
params['device_id'] = self.device_id
params['guid'] = self._generate_guid()
params['adid'] = self._generate_guid()
# Add Instagram signature
if
signature = self._generate_signature(data)
params['signed_body'] = f"{signature}.{json.dumps(data)}"
try:
if method == 'GET':
response = self.session.get(
endpoint,
headers=self.headers,
params=params,
proxies=self.proxy
)
else:
response = self.session.post(
endpoint,
headers=self.headers,
params=params,
data=data,
proxies=self.proxy
)
# Handle rate limiting
if response.status_code == 429:
retry_after = int(response.headers.get('x-ratelimit-reset', 60))
time.sleep(retry_after + 5)
return self._make_request(endpoint, params, data, method)
# Handle invalid session
if 'login_required' in response.text:
raise Exception("Login required - session expired")
response.raise_for_status()
return response.json()
except Exception as e:
print(f"API request failed: {str(e)}")
raise
def _generate_guid(self):
"""Generate Instagram GUID"""
return str(uuid.uuid4())
def _generate_signature(self, data):
"""Generate Instagram request signature"""
# Instagram uses a specific signature algorithm
# This is a simplified version
data_json = json.dumps(data, separators=(',', ':'))
return hmac.new(
b'ig_secret_key',
data_json.encode(),
hashlib.sha256
).hexdigest()
def get_user_id(self, username):
"""Get user ID from username"""
endpoint = self.endpoints['user_id'].format(username=username)
response = self._make_request(endpoint)
return response['user']['pk']
def get_user_feed(self, user_id, count=12):
"""Get a user's feed/posts"""
endpoint = self.endpoints['user_feed'].format(user_id=user_id)
params = {
'count': str(count),
'max_id': '',
'min_timestamp': '',
'rank_token': self._generate_guid(),
'include_fixed_destinations': 'true'
}
return self._make_request(endpoint, params=params)
def get_post_details(self, media_id):
"""Get details for a specific post"""
endpoint = self.endpoints['post_details'].format(media_id=media_id)
return self._make_request(endpoint)
def search_users(self, query, count=10):
"""Search for users by query"""
endpoint = self.endpoints['search_users'].format(query=query)
response = self._make_request(endpoint)
return response['users'][:count]
def extract_post_data(self, post_json):
"""Extract structured data from post JSON"""
# Implementation would parse Instagram's response structure
pass
def extract_user_data(self, user_json):
"""Extract structured data from user JSON"""
# Implementation would parse user profile data
pass
```
### **Ethical Considerations for Social Media Scraping**
#### **Social Media Scraping Policy Framework**
```python
# social_media_policy.py
from datetime import datetime, timedelta
class SocialMediaPolicy:
def __init__(self):
self.platform_policies = {
'facebook': self._facebook_policy(),
'twitter': self._twitter_policy(),
'instagram': self._instagram_policy(),
'linkedin': self._linkedin_policy(),
'tiktok': self._tiktok_policy()
}
self.user_consent = {}
self.compliance_log = []
def _facebook_policy(self):
"""Facebook scraping policy based on ToS and GDPR"""
return {
'allowed_data': [
'public_page_info',
'public_post_content',
'public_event_info'
],
'prohibited_data': [
'private_messages',
'user_contact_info',
'friend_lists',
'non-public_content'
],
'rate_limits': {
'requests_per_hour': 200,
'delay_between_requests': 3.0
},
'consent_required': True,
'data_retention': timedelta(days=30),
'gdpr_compliance': True,
'ccpa_compliance': True
}
def _twitter_policy(self):
"""Twitter scraping policy based on ToS and GDPR"""
return {
'allowed_data': [
'public_tweets',
'public_user_profiles',
'trending_topics'
],
'prohibited_data': [
'direct_messages',
'non-public_metrics',
'user_email_addresses'
],
'rate_limits': {
'requests_per_15min': 900, # Standard API limit
'delay_between_requests': 1.0
},
'consent_required': False, # Public data is generally allowed
'data_retention': timedelta(days=7),
'gdpr_compliance': True,
'ccpa_compliance': True
}
def _instagram_policy(self):
"""Instagram scraping policy based on ToS and GDPR"""
return {
'allowed_data': [
'public_profiles',
'public_posts',
'public_comments'
],
'prohibited_data': [
'private_messages',
'follower_lists',
'user_location_data'
],
'rate_limits': {
'requests_per_hour': 200,
'delay_between_requests': 3.0
},
'consent_required': True,
'data_retention': timedelta(days=30),
'gdpr_compliance': True,
'ccpa_compliance': True
}
def _linkedin_policy(self):
"""LinkedIn scraping policy based on ToS and GDPR"""
return {
'allowed_data': [
'public_company_pages',
'public_job_listings'
],
'prohibited_data': [
'user_profiles',
'connection_data',
'messaging_data',
'non-public_content'
],
'rate_limits': {
'requests_per_hour': 100,
'delay_between_requests': 5.0
},
'consent_required': True,
'data_retention': timedelta(days=14),
'gdpr_compliance': True,
'ccpa_compliance': True
}
def _tiktok_policy(self):
"""TikTok scraping policy based on ToS and GDPR"""
return {
'allowed_data': [
'public_videos',
'public_profiles',
'public_hashtags'
],
'prohibited_data': [
'user_contacts',
'private_messages',
'user_location_history'
],
'rate_limits': {
'requests_per_hour': 300,
'delay_between_requests': 2.0
},
'consent_required': True,
'data_retention': timedelta(days=30),
'gdpr_compliance': True,
'ccpa_compliance': True
}
def check_compliance(self, platform, data_request, user_id=None):
"""
Check if data request complies with platform policy
Returns:
Tuple of (is_compliant, reason, recommended_action)
"""
policy = self.platform_policies.get(platform)
if not policy:
return (False, "Unsupported platform", "Do not proceed")
# Check data types
unauthorized_data = [
d for d in data_request['data_types']
if d in policy['prohibited_data']
]
if unauthorized_
return (
False,
f"Requesting prohibited data: {', '.join(unauthorized_data)}",
"Remove prohibited data types from request"
)
# Check consent (if required)
if policy['consent_required'] and not self._has_valid_consent(user_id, platform):
return (
False,
"Valid consent required but not provided",
"Obtain explicit user consent"
)
# Check rate limits
if not self._check_rate_limits(platform):
return (
False,
"Exceeding rate limits for platform",
"Implement request throttling"
)
# Check data retention
retention_days = (data_request.get('retention_date', datetime.utcnow()) -
datetime.utcnow()).days
if retention_days > policy['data_retention'].days:
return (
False,
f"Requested data retention ({retention_days} days) exceeds policy limit "
f"({policy['data_retention'].days} days)",
f"Reduce retention period to {policy['data_retention'].days} days"
)
return (True, "Request complies with platform policy", "Proceed with request")
def _has_valid_consent(self, user_id, platform):
"""Check if valid consent exists for user and platform"""
if not user_id:
return False
consent = self.user_consent.get(user_id, {}).get(platform)
if not consent:
return False
# Check consent expiration
if consent['expiration'] < datetime.utcnow():
return False
return True
def _check_rate_limits(self, platform):
"""Check if current request stays within rate limits"""
# Implementation would track request history
return True
def log_compliance_check(self, platform, request, result):
"""Log compliance check for auditing"""
self.compliance_log.append({
'timestamp': datetime.utcnow().isoformat(),
'platform': platform,
'request': request,
'result': result,
'user_id': request.get('user_id')
})
def get_policy_summary(self, platform):
"""Get human-readable policy summary for a platform"""
policy = self.platform_policies.get(platform)
if not policy:
return "Policy information not available for this platform"
return (
f"Scraping Policy for {platform.capitalize()}:\n\n"
f"ALLOWED DATA:\n- " + "\n- ".join(policy['allowed_data']) + "\n\n"
f"PROHIBITED DATA:\n- " + "\n- ".join(policy['prohibited_data']) + "\n\n"
f"RATE LIMITS: {policy['rate_limits']['requests_per_hour']} requests/hour\n"
f"DATA RETENTION: Up to {policy['data_retention'].days} days\n"
f"CONSENT REQUIRED: {'Yes' if policy['consent_required'] else 'No'}\n\n"
f"COMPLIANCE: GDPR {'✓' if policy['gdpr_compliance'] else '✗'}, "
f"CCPA {'✓' if policy['ccpa_compliance'] else '✗'}"
)
```
---
## **2. Mobile App Scraping and Reverse Engineering** 📲
Mobile apps present unique challenges with their native code, encrypted traffic, and device-specific protections.
### **Mobile Traffic Interception Techniques**
#### **1. SSL Pinning Bypass**
```python
# ssl_pinning_bypass.py
import frida
import sys
import time
class SSLPinningBypasser:
def __init__(self, package_name):
self.package_name = package_name
self.device = frida.get_usb_device()
self.session = None
self.script = None
def start(self):
"""Start the SSL pinning bypass"""
print(f"Attaching to {self.package_name}...")
# Spawn the app
pid = self.device.spawn([self.package_name])
self.session = self.device.attach(pid)
# Load bypass script
with open('ssl_bypass.js') as f:
js_code = f.read()
# Create and load script
self.script = self.session.create_script(js_code)
self.script.on('message', self._on_message)
self.script.load()
# Resume the app
self.device.resume(pid)
print(f"SSL pinning bypass active for {self.package_name}")
return True
def _on_message(self, message, data):
"""Handle messages from Frida script"""
if message['type'] == 'send':
print(f"[FRIDA] {message['payload']}")
else:
print(message)
def stop(self):
"""Stop the SSL pinning bypass"""
if self.session:
self.session.detach()
self.session = None
print("SSL pinning bypass stopped")
def interact(self):
"""Interactive mode to keep the script running"""
print("Press Ctrl+C to stop...")
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
self.stop()
# SSL bypass script (ssl_bypass.js)
"""
// SSL pinning bypass for Android and iOS
console.log("SSL pinning bypass script loaded");
// Android bypass
if (Java.available) {
Java.perform(function() {
console.log("Android environment detected");
// OkHttp bypass
var OkHttpClient = Java.use('okhttp3.OkHttpClient');
OkHttpClient$Builder = Java.use('okhttp3.OkHttpClient$Builder');
OkHttpClient$Builder.build.implementation = function() {
this.hostnameVerifier({verify: function() { return true; }});
this.sslSocketFactory({}, {});
return this.build();
};
// TrustManager bypass
var TrustManagerImpl = Java.use('com.android.org.conscrypt.TrustManagerImpl');
TrustManagerImpl.checkTrustedRecursive.implementation = function() {
console.log("[SSL] Bypassing TrustManager check");
return;
};
console.log("Android SSL pinning bypass installed");
});
}
// iOS bypass
if (ObjC.available) {
console.log("iOS environment detected");
// NSURLSession bypass
var NSURLSession = ObjC.classes.NSURLSession;
var NSURLSessionTask = ObjC.classes.NSURLSessionTask;
Interceptor.attach(NSURLSessionTask['- _willPerformHTTPRedirection:'], {
onEnter: function(args) {
console.log("[SSL] Bypassing redirection SSL check");
var newRequest = args[2];
Interceptor.attach(newRequest['- URL'], {
onLeave: function(retval) {
retval.replace(ObjC.classes.NSURL.URLWithString_("https://example.com"));
}
});
}
});
console.log("iOS SSL pinning bypass installed");
}
"""
# Usage
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python ssl_pinning_bypass.py <package_name>")
sys.exit(1)
bypasser = SSLPinningBypasser(sys.argv[1])
if bypasser.start():
bypasser.interact()
```
#### **2. Mobile API Reverse Engineering**
```python
# mobile_api.py
import requests
import json
import re
from urllib.parse import urlparse
class MobileAPIAnalyzer:
def __init__(self, proxy='http://localhost:8080'):
self.proxy = {'http': proxy, 'https': proxy}
self.session = requests.Session()
self.endpoints = {}
self.auth_mechanisms = {}
self.request_patterns = {}
def intercept_traffic(self, duration=60):
"""
Intercept mobile app traffic for analysis
Args:
duration: How long to intercept traffic (seconds)
"""
print(f"Starting traffic interception for {duration} seconds...")
print("Please use the mobile app during this time")
# This would typically connect to a proxy like Burp Suite
# For demonstration, we'll simulate traffic capture
time.sleep(duration)
# Analyze captured traffic
self._analyze_captured_traffic()
return {
'endpoints': self.endpoints,
'auth_mechanisms': self.auth_mechanisms,
'request_patterns': self.request_patterns
}
def _analyze_captured_traffic(self):
"""Analyze captured HTTP/HTTPS traffic"""
# In a real implementation, this would process captured traffic
# Here we simulate with sample data
self._process_sample_traffic()
def _process_sample_traffic(self):
"""Process sample traffic for demonstration"""
# Simulated endpoints
self.endpoints = {
'auth': {
'url': 'https://api.example.com/v1/auth/login',
'methods': ['POST'],
'params': ['username', 'password', 'device_id']
},
'user_profile': {
'url': 'https://api.example.com/v1/users/{user_id}',
'methods': ['GET'],
'params': ['user_id'],
'auth_required': True
},
'feed': {
'url': 'https://api.example.com/v1/feed',
'methods': ['GET'],
'params': ['limit', 'cursor'],
'auth_required': True
}
}
# Simulated auth mechanisms
self.auth_mechanisms = {
'type': 'JWT',
'header': 'Authorization',
'format': 'Bearer {token}',
'token_lifetime': 3600
}
# Simulated request patterns
self.request_patterns = {
'common_headers': [
'User-Agent',
'Content-Type',
'Authorization',
'X-Device-ID',
'X-App-Version'
],
'device_identifiers': [
'device_id',
'advertising_id',
'device_model',
'os_version'
]
}
def generate_client_sdk(self, language='python'):
"""
Generate client SDK for the mobile API
Returns:
Code for API client in specified language
"""
if language == 'python':
return self._generate_python_sdk()
elif language == 'javascript':
return self._generate_javascript_sdk()
else:
raise ValueError(f"Unsupported language: {language}")
def _generate_python_sdk(self):
"""Generate Python SDK for the mobile API"""
endpoints = self.endpoints
auth = self.auth_mechanisms
sdk_code = f"""# Auto-generated mobile API client
import requests
import json
import time
class MobileAPIClient:
def __init__(self, base_url="{self._extract_base_url()}", api_key=None):
self.base_url = base_url
self.api_key = api_key
self.session = requests.Session()
self.token = None
self.token_expiry = 0
self.device_id = self._generate_device_id()
def _generate_device_id(self):
\"\"\"Generate device identifier\"\"\"
return f"device-{{int(time.time())}}-{{hash(str(time.time()))}}"
def _ensure_authenticated(self):
\"\"\"Ensure we have a valid authentication token\"\"\"
if self.token and time.time() < self.token_expiry:
return
if not self.api_key:
raise ValueError("API key required for authentication")
# Get new token
response = self.session.post(
f"{{self.base_url}}/auth/token",
json={{'api_key': self.api_key, 'device_id': self.device_id}}
)
response.raise_for_status()
data = response.json()
self.token = data['token']
self.token_expiry = time.time() + data.get('expires_in', 3600) - 60
def _make_request(self, endpoint, method='GET', params=None, data=None):
\"\"\"Make authenticated API request\"\"\"
self._ensure_authenticated()
url = f"{{self.base_url}}{{endpoint}}"
headers = {{
'Authorization': '{auth['format'].replace('{token}', '{{self.token}}')}',
'Content-Type': 'application/json',
'X-Device-ID': self.device_id
}}
if method.upper() == 'GET':
response = self.session.get(
url,
headers=headers,
params=params
)
else:
response = self.session.request(
method,
url,
headers=headers,
params=params,
json=data
)
response.raise_for_status()
return response.json()
"""
# Add endpoint methods
for name, endpoint in endpoints.items():
if 'auth_required' in endpoint and not endpoint['auth_required']:
auth_comment = "# No authentication required"
else:
auth_comment = "# Authentication required"
sdk_code += f" # {endpoint['url']} - {auth_comment}\n"
sdk_code += f" def {self._snake_case(name)}(self"
# Add parameters
if 'params' in endpoint:
for param in endpoint['params']:
sdk_code += f", {param}=None"
sdk_code += "):\n"
sdk_code += f" \"\"\"{endpoint['url']}\"\"\"\n"
# Build params dictionary
if 'params' in endpoint:
sdk_code += " params = {}\n"
for param in endpoint['params']:
sdk_code += f" if {param} is not None:\n"
sdk_code += f" params['{param}'] = {param}\n"
# Make request
sdk_code += f" return self._make_request(\n"
sdk_code += f" '{endpoint['url'].replace(self._extract_base_url(), '')}',\n"
sdk_code += f" method='{endpoint['methods'][0]}',\n"
if 'params' in endpoint:
sdk_code += " params=params\n"
else:
sdk_code += " params=None\n"
sdk_code += " )\n\n"
return sdk_code
def _extract_base_url(self):
"""Extract base URL from endpoints"""
if not self.endpoints:
return "https://api.example.com/v1"
# Get first endpoint URL
first_url = list(self.endpoints.values())[0]['url']
parsed = urlparse(first_url)
return f"{parsed.scheme}://{parsed.netloc}{parsed.path.rsplit('/', 1)[0]}"
def _snake_case(self, name):
"""Convert name to snake_case"""
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
```
### **Mobile-Specific Scraping Challenges**
#### **1. Device Fingerprinting Countermeasures**
```python
# device_fingerprint.py
import uuid
import random
import string
from datetime import datetime
class MobileDeviceFingerprint:
def __init__(self, platform='android'):
self.platform = platform
self.fingerprint = self._generate_fingerprint()
def _generate_fingerprint(self):
"""Generate realistic mobile device fingerprint"""
if self.platform == 'android':
return self._generate_android_fingerprint()
elif self.platform == 'ios':
return self._generate_ios_fingerprint()
else:
raise ValueError(f"Unsupported platform: {self.platform}")
def _generate_android_fingerprint(self):
"""Generate Android-specific device fingerprint"""
manufacturers = ['samsung', 'google', 'xiaomi', 'huawei', 'oneplus']
models = {
'samsung': ['SM-G975F', 'SM-N975F', 'SM-A505FN'],
'google': ['Pixel 3', 'Pixel 4', 'Pixel 5'],
'xiaomi': ['MI 9', 'Redmi Note 8', 'Mi 10'],
'huawei': ['P30 Pro', 'Mate 20', 'Nova 5T'],
'oneplus': ['ONEPLUS A6003', 'ONEPLUS 7T', 'ONEPLUS 8']
}
android_versions = ['10', '11', '12']
manufacturer = random.choice(manufacturers)
model = random.choice(models[manufacturer])
android_version = random.choice(android_versions)
return {
'platform': 'android',
'manufacturer': manufacturer,
'model': model,
'android_version': android_version,
'device_id': self._generate_device_id(),
'advertising_id': self._generate_advertising_id(),
'screen_resolution': self._generate_screen_resolution(),
'locale': self._generate_locale(),
'user_agent': self._generate_user_agent(manufacturer, model, android_version),
'build_fingerprint': self._generate_build_fingerprint(manufacturer, model, android_version)
}
def _generate_ios_fingerprint(self):
"""Generate iOS-specific device fingerprint"""
models = ['iPhone12,1', 'iPhone12,3', 'iPhone12,5', 'iPhone13,2', 'iPhone13,4']
ios_versions = ['14.4', '14.5', '15.0', '15.1']
model = random.choice(models)
ios_version = random.choice(ios_versions)
return {
'platform': 'ios',
'model': model,
'ios_version': ios_version,
'device_id': self._generate_device_id(),
'advertising_id': self._generate_advertising_id(),
'screen_resolution': self._generate_screen_resolution(),
'locale': self._generate_locale(),
'user_agent': self._generate_user_agent(model, ios_version),
'idfv': self._generate_idfv()
}
def _generate_device_id(self):
"""Generate device ID"""
return f"android-{random.randint(0, 1e12):x}:{int(time.time())}"
def _generate_advertising_id(self):
"""Generate advertising ID"""
return str(uuid.uuid4())
def _generate_screen_resolution(self):
"""Generate realistic screen resolution"""
resolutions = [
'1080x1920', '1440x2960', '720x1280',
'1080x2340', '1125x2436', '1284x2778'
]
return random.choice(resolutions)
def _generate_locale(self):
"""Generate locale information"""
locales = [
'en-US', 'en-GB', 'es-ES', 'fr-FR',
'de-DE', 'ja-JP', 'ko-KR', 'zh-CN'
]
return random.choice(locales)
def _generate_user_agent(self, *args):
"""Generate platform-specific user agent"""
if self.platform == 'android':
manufacturer, model, android_version = args
return (
f"Mozilla/5.0 (Linux; Android {android_version}; {model}) "
"AppleWebKit/537.36 (KHTML, like Gecko) Mobile "
"Chrome/91.0.4472.120 Safari/537.36"
)
else:
model, ios_version = args
return (
f"Mozilla/5.0 (iPhone; CPU iPhone OS {ios_version.replace('.', '_')} "
f"like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) "
"Mobile/15E148 [FBAN/FBIOS;FBDV/{model};FBMD/iPhone;FBSN/iOS;"
f"FBSV/{ios_version};FBSS/3;FBCR/;FBID/phone;FBLC/en_US;FBOP/5]"
)
def _generate_build_fingerprint(self, manufacturer, model, android_version):
"""Generate Android build fingerprint"""
build_ids = {
'10': 'QQ2A.200501.001.B3',
'11': 'RQ3A.210705.001',
'12': 'SP2A.220505.008'
}
return (
f"{manufacturer}/{model}/{model}:{android_version}/"
f"{build_ids[android_version]}/user/release-keys"
)
def _generate_idfv(self):
"""Generate iOS Identifier for Vendors (IDFV)"""
return str(uuid.uuid4())
def get_headers(self):
"""Get headers for mobile API requests"""
fingerprint = self.fingerprint
headers = {
'User-Agent': fingerprint['user_agent'],
'X-Device-ID': fingerprint['device_id'],
'X-Advertising-ID': fingerprint['advertising_id'],
'X-Device-Model': fingerprint['model'],
'X-OS-Version': fingerprint['android_version'] if self.platform == 'android' else fingerprint['ios_version'],
'Accept-Language': fingerprint['locale'].replace('-', '_') + ',en-US;q=0.9',
'Content-Type': 'application/json; charset=utf-8',
'X-Requested-With': 'XMLHttpRequest'
}
# Platform-specific headers
if self.platform == 'android':
headers.update({
'X-Manufacturer': fingerprint['manufacturer'],
'X-Android-Version': fingerprint['android_version'],
'X-Screen-Resolution': fingerprint['screen_resolution']
})
else:
headers.update({
'X-Device-Type': 'iPhone',
'X-IDFV': fingerprint['idfv']
})
return headers
def emulate_device(self, driver):
"""Emulate device in Selenium/WebDriver"""
fingerprint = self.fingerprint
# Set mobile emulation options
mobile_emulation = {
'deviceMetrics': {
'width': int(fingerprint['screen_resolution'].split('x')[0]),
'height': int(fingerprint['screen_resolution'].split('x')[1]),
'pixelRatio': 3.0
},
'userAgent': fingerprint['user_agent']
}
# Configure Chrome options
driver.execute_cdp_cmd('Emulation.setDeviceMetricsOverride', mobile_emulation)
driver.execute_cdp_cmd('Network.setUserAgentOverride', {
'userAgent': fingerprint['user_agent']
})
# Set additional device properties
driver.execute_script("""
Object.defineProperty(navigator, 'platform', {
get: () => '%s'
});
Object.defineProperty(navigator, 'deviceMemory', {
get: () => 8
});
Object.defineProperty(navigator, 'hardwareConcurrency', {
get: () => 8
});
""" % (fingerprint['model']))
```
---
## **3. Dark Web Data Extraction (Ethical Considerations)** 🌑
The dark web presents unique opportunities and risks for data extraction. This section focuses on ethical approaches to dark web data collection.
### **Understanding the Dark Web Landscape**
#### **Dark Web Structure**
```
Surface Web (Indexed by search engines) → 90% of web
↓
Deep Web (Unindexed but legal content) → 9% of web
↓
Dark Web (Intentionally hidden services) → 0.005% of web
↓
├── Tor Network (.onion sites)
├── I2P Network (.i2p sites)
├── Freenet
└── Other decentralized networks
```
### **Ethical Framework for Dark Web Research**
#### **1. Ethical Decision Matrix**
```python
# dark_web_ethics.py
from datetime import datetime, timedelta
class DarkWebEthics:
def __init__(self, researcher_id, institution):
self.researcher_id = researcher_id
self.institution = institution
self.approval_history = []
self.data_inventory = []
self.current_session = None
def request_access(self, target, purpose, duration=1):
"""
Request ethical approval for dark web access
Args:
target: Dark web resource to access
purpose: Research purpose
duration: Duration of access in days
Returns:
Approval status and token
"""
# Validate researcher credentials
if not self._validate_researcher():
return {
'approved': False,
'reason': 'Researcher not validated',
'token': None
}
# Check institutional approval
if not self._check_institutional_approval():
return {
'approved': False,
'reason': 'Institutional approval required',
'token': None
}
# Evaluate ethical considerations
ethics_check = self._evaluate_ethical_risks(target, purpose)
if not ethics_check['approved']:
return {
**ethics_check,
'token': None
}
# Create access token
access_token = self._generate_access_token(
target,
purpose,
duration
)
# Record approval
self.approval_history.append({
'timestamp': datetime.utcnow().isoformat(),
'researcher': self.researcher_id,
'institution': self.institution,
'target': target,
'purpose': purpose,
'duration': duration,
'token': access_token,
'expires': (datetime.utcnow() + timedelta(days=duration)).isoformat()
})
# Start session
self.current_session = {
'token': access_token,
'target': target,
'start_time': datetime.utcnow().isoformat(),
'end_time': (datetime.utcnow() + timedelta(days=duration)).isoformat()
}
return {
'approved': True,
'reason': 'Access approved',
'token': access_token,
'expires': self.current_session['end_time']
}
def _validate_researcher(self):
"""Validate researcher credentials"""
# Implementation would check against institutional database
return True # Simplified for example
def _check_institutional_approval(self):
"""Check for institutional review board approval"""
# Implementation would verify IRB approval
return True # Simplified for example
def _evaluate_ethical_risks(self, target, purpose):
"""Evaluate ethical risks of dark web access"""
# Check target against prohibited categories
prohibited_categories = [
'child_sexual_abuse_material',
'active_malware_distribution',
'human_trafficking',
'drug_marketplaces',
'weapon_marketplaces'
]
# Analyze target URL
target_category = self._categorize_target(target)
# Check if target is in prohibited categories
if target_category in prohibited_categories:
return {
'approved': False,
'reason': f'Access to {target_category} is prohibited',
'risk_level': 'critical'
}
# Evaluate purpose
valid_purposes = [
'cybersecurity_research',
'threat_intelligence',
'academic_study',
'law_enforcement'
]
if purpose not in valid_purposes:
return {
'approved': False,
'reason': 'Invalid research purpose',
'risk_level': 'high'
}
# Check for minimal intrusion principle
if not self._follows_minimal_intrusion(purpose):
return {
'approved': False,
'reason': 'Does not follow minimal intrusion principle',
'risk_level': 'medium'
}
return {
'approved': True,
'reason': 'Ethical requirements met',
'risk_level': 'low'
}
def _categorize_target(self, target):
"""Categorize dark web target"""
# Implementation would analyze target content
# This is a simplified version
if 'child' in target or 'cp' in target:
return 'child_sexual_abuse_material'
if 'malware' in target or 'exploit' in target:
return 'active_malware_distribution'
if 'drugs' in target or 'narcotics' in target:
return 'drug_marketplaces'
if 'weapons' in target or 'guns' in target:
return 'weapon_marketplaces'
return 'other'
def _follows_minimal_intrusion(self, purpose):
"""Check if research follows minimal intrusion principle"""
# Implementation would evaluate research methodology
return True # Simplified for example
def _generate_access_token(self, target, purpose, duration):
"""Generate secure access token"""
import uuid
import hashlib
import time
token_data = f"{self.researcher_id}|{target}|{purpose}|{duration}|{time.time()}"
return hashlib.sha256(token_data.encode()).hexdigest()
def log_data_collection(self, data_type, volume, sensitivity):
"""
Log data collection activities
Args:
data_type: Type of data collected
volume: Volume of data (in MB)
sensitivity: Sensitivity level (1-5)
"""
if not self.current_session:
raise ValueError("No active session")
# Validate sensitivity level
if sensitivity < 1 or sensitivity > 5:
raise ValueError("Sensitivity must be between 1-5")
# Record data collection
self.data_inventory.append({
'timestamp': datetime.utcnow().isoformat(),
'session_token': self.current_session['token'],
'data_type': data_type,
'volume_mb': volume,
'sensitivity': sensitivity,
'researcher': self.researcher_id
})
def get_ethical_guidelines(self):
"""Get comprehensive ethical guidelines for dark web research"""
return {
'principles': [
'Respect for persons: Recognize autonomy and protect those with diminished autonomy',
'Beneficence: Maximize possible benefits and minimize possible harms',
'Justice: Ensure fair distribution of research benefits and burdens',
'Minimal Intrusion: Collect only the minimum data necessary for research',
'Transparency: Document all research methods and data handling procedures',
'Accountability: Maintain clear audit trails of all research activities'
],
'prohibited_activities': [
'Accessing or distributing child sexual abuse material',
'Participating in illegal marketplaces',
'Engaging in or facilitating cybercrime',
'Collecting personally identifiable information without consent',
'Causing disruption to dark web services'
],
'data_handling_requirements': [
'All data must be encrypted at rest and in transit',
'Sensitive data must be stored in secure, access-controlled environments',
'Data retention must not exceed research needs',
'Personal data must be anonymized where possible',
'Regular security audits must be conducted'
]
}
def validate_session(self, token):
"""Validate if session token is valid"""
if not self.current_session or self.current_session['token'] != token:
return False
# Check expiration
if datetime.utcnow() > datetime.fromisoformat(self.current_session['end_time']):
return False
return True
```
### **Technical Implementation for Safe Exploration**
#### **1. Secure Dark Web Access Environment**
```python
# dark_web_access.py
import stem
from stem.control import Controller
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import os
import tempfile
import subprocess
import time
class DarkWebAccess:
def __init__(self, tor_port=9050, control_port=9051):
self.tor_port = tor_port
self.control_port = control_port
self.tor_process = None
self.session = None
self.temp_dir = tempfile.mkdtemp()
def start_tor(self, socks_port=None, control_port=None):
"""
Start a dedicated Tor instance for research
Returns:
Tor process object
"""
print("Starting isolated Tor instance for research...")
# Create Tor configuration
torrc = f"""
SocksPort {socks_port or self.tor_port}
ControlPort {control_port or self.control_port}
DataDirectory {self.temp_dir}/tor_data
Log notice stdout
AvoidDiskWrites 1
"""
# Write config to temporary file
config_path = os.path.join(self.temp_dir, 'torrc')
with open(config_path, 'w') as f:
f.write(torrc)
# Start Tor process
self.tor_process = subprocess.Popen(
['tor', '-f', config_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# Wait for Tor to initialize
time.sleep(5)
# Verify Tor is running
if not self._is_tor_running():
self.stop_tor()
raise RuntimeError("Failed to start Tor instance")
print(f"Tor instance started on SOCKS port {self.tor_port}")
return self.tor_process
def _is_tor_running(self):
"""Check if Tor is running and ready"""
try:
with Controller.from_port(port=self.control_port) as controller:
controller.authenticate()
return controller.is_new_consensus_available()
except:
return False
def create_session(self):
"""
Create requests session with Tor proxy
Returns:
Configured requests session
"""
# Ensure Tor is running
if not self.tor_process or not self._is_tor_running():
self.start_tor()
# Create session with retry logic
session = requests.Session()
# Configure Tor proxy
session.proxies = {
'http': f'socks5h://127.0.0.1:{self.tor_port}',
'https': f'socks5h://127.0.0.1:{self.tor_port}'
}
# Add retry mechanism
retry = Retry(
total=3,
backoff_factor=0.5,
status_forcelist=[500, 502, 503, 504]
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
# Set safe headers
session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept-Language': 'en-US,en;q=0.9',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
})
self.session = session
return session
def get_onion_service(self, onion_url):
"""
Access an onion service with safety measures
Returns:
Response object
"""
# Validate URL format
if not onion_url.endswith('.onion'):
raise ValueError("Invalid onion URL - must end with .onion")
# Create session if needed
if not self.session:
self.create_session()
# Add safety headers
self.session.headers.update({
'Tor-Connection': 'Isolated',
'Research-Purpose': 'Academic/Cybersecurity'
})
try:
# Make request with timeout
response = self.session.get(
onion_url,
timeout=30
)
# Check for dangerous content
self._check_for_dangerous_content(response)
return response
except Exception as e:
print(f"Error accessing {onion_url}: {str(e)}")
raise
def _check_for_dangerous_content(self, response):
"""Check response for prohibited content"""
# Check content type
content_type = response.headers.get('Content-Type', '')
if 'application/octet-stream' in content_type:
raise ValueError("Binary content detected - potential malware")
# Check for known CSAM indicators (simplified)
if self._contains_csam_indicators(response.text):
raise ValueError("Potential child sexual abuse material detected")
def _contains_csam_indicators(self, content):
"""Check for indicators of prohibited content"""
# This is a simplified example - real implementation would be more sophisticated
csam_keywords = [
'child porn', 'cp', 'lolicon', 'shotacon',
'teen porn', 'young porn', 'minor porn'
]
content_lower = content.lower()
return any(keyword in content_lower for keyword in csam_keywords)
def rotate_identity(self):
"""Rotate Tor identity for anonymity"""
with Controller.from_port(port=self.control_port) as controller:
controller.authenticate()
controller.signal(stem.Signal.NEWNYM)
print("Tor identity rotated")
def stop_tor(self):
"""Stop the Tor instance and clean up"""
if self.tor_process:
self.tor_process.terminate()
self.tor_process.wait()
self.tor_process = None
# Clean up temporary directory
if os.path.exists(self.temp_dir):
import shutil
shutil.rmtree(self.temp_dir)
print("Tor instance stopped and cleaned up")
def __enter__(self):
"""Context manager entry"""
self.start_tor()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit"""
self.stop_tor()
```
---
## **4. Real-Time Financial Data Scraping** 💰
Financial data scraping requires precision, speed, and regulatory compliance.
### **Financial Data Sources and Regulations**
#### **Key Financial Data Regulations**
| Regulation | Scope | Key Requirements |
|------------|-------|------------------|
| **SEC Rule 15c3-5** | US Broker-dealers | Market access controls, risk management |
| **MiFID II** | EU Financial Markets | Best execution, transaction reporting |
| **Regulation NMS** | US Equity Markets | Order protection, market data |
| **GDPR** | EU Personal Data | Data protection, consent |
| **FINRA Rules** | US Broker-dealers | Supervision, recordkeeping |
### **Real-Time Financial Data Pipeline**
#### **1. Market Data Collection System**
```python
# market_data.py
import websocket
import json
import time
import threading
from datetime import datetime
import pandas as pd
from regulatory_compliance import FinancialCompliance
class MarketDataCollector:
def __init__(self, compliance_system):
self.compliance = compliance_system
self.connections = {}
self.data_buffer = []
self.buffer_size = 1000
self.flush_interval = 5 # seconds
self.flush_thread = None
self.running = False
def connect_to_exchange(self, exchange, symbols, callback=None):
"""
Connect to a financial exchange data feed
Args:
exchange: Exchange name (e.g., 'binance', 'nyse')
symbols: List of symbols to track
callback: Optional callback for real-time data
"""
# Check regulatory compliance
if not self.compliance.check_market_data_access(exchange, symbols):
raise RegulatoryViolationError(
f"Access to {exchange} data for {symbols} not compliant"
)
# Create connection based on exchange
if exchange in ['binance', 'coinbase', 'kraken']:
conn = self._connect_to_crypto_exchange(exchange, symbols, callback)
elif exchange in ['nyse', 'nasdaq', 'amex']:
conn = self._connect_to_stock_exchange(exchange, symbols, callback)
else:
raise ValueError(f"Unsupported exchange: {exchange}")
self.connections[exchange] = conn
return conn
def _connect_to_crypto_exchange(self, exchange, symbols, callback):
"""Connect to cryptocurrency exchange WebSocket"""
# Exchange-specific WebSocket URLs
urls = {
'binance': 'wss://stream.binance.com:9443/stream',
'coinbase': 'wss://ws-feed.pro.coinbase.com',
'kraken': 'wss://ws.kraken.com'
}
# Format symbols for exchange
if exchange == 'binance':
stream_names = [f"{s.lower()}@ticker" for s in symbols]
payload = {
"method": "SUBSCRIBE",
"params": stream_names,
"id": 1
}
elif exchange == 'coinbase':
product_ids = [s.replace('-', '-') for s in symbols]
payload = {
"type": "subscribe",
"product_ids": product_ids,
"channels": ["ticker"]
}
elif exchange == 'kraken':
pair_ids = [s.replace('-', '').lower() for s in symbols]
payload = {
"event": "subscribe",
"pair": pair_ids,
"subscription": {"name": "ticker"}
}
# Create WebSocket connection
ws = websocket.WebSocketApp(
urls[exchange],
on_open=lambda ws: ws.send(json.dumps(payload)),
on_message=lambda ws, msg: self._handle_crypto_message(ws, msg, exchange, callback),
on_error=lambda ws, err: print(f"{exchange} error: {err}"),
on_close=lambda ws, close_status_code, close_msg:
print(f"{exchange} connection closed")
)
# Start in separate thread
thread = threading.Thread(target=ws.run_forever)
thread.daemon = True
thread.start()
return {
'websocket': ws,
'thread': thread,
'exchange': exchange,
'symbols': symbols
}
def _handle_crypto_message(self, ws, message, exchange, callback):
"""Handle cryptocurrency market data message"""
try:
data = json.loads(message)
# Process based on exchange format
if exchange == 'binance':
if 'data' in data and data['stream'].endswith('@ticker'):
ticker = data['data']
symbol = ticker['s']
processed = {
'exchange': exchange,
'symbol': symbol,
'price': float(ticker['c']),
'volume': float(ticker['v']),
'timestamp': datetime.fromtimestamp(ticker['E'] / 1000)
}
elif exchange == 'coinbase':
if data['type'] == 'ticker':
processed = {
'exchange': exchange,
'symbol': data['product_id'],
'price': float(data['price']),
'volume': float(data['volume_24h']),
'timestamp': datetime.fromisoformat(data['time'])
}
elif exchange == 'kraken':
if 'channelID' in data and 'ticker' in data.get('channelName', ''):
pair = data['pair']
ticker = data['data']
processed = {
'exchange': exchange,
'symbol': pair,
'price': float(ticker['c'][0]),
'volume': float(ticker['v'][1]),
'timestamp': datetime.fromtimestamp(ticker['t'][1])
}
# Add to buffer
self._add_to_buffer(processed)
# Execute callback
if callback:
callback(processed)
except Exception as e:
print(f"Error processing {exchange} message: {str(e)}")
def _connect_to_stock_exchange(self, exchange, symbols, callback):
"""Connect to stock exchange data feed"""
# Implementation would connect to financial data providers
# like Polygon, Alpha Vantage, or exchange direct feeds
pass
def _add_to_buffer(self, data_point):
"""Add data point to buffer and flush if needed"""
self.data_buffer.append(data_point)
# Flush if buffer is full
if len(self.data_buffer) >= self.buffer_size:
self._flush_buffer()
def start_buffer_flushing(self):
"""Start background thread for periodic buffer flushing"""
self.running = True
self.flush_thread = threading.Thread(target=self._buffer_flushing_loop)
self.flush_thread.daemon = True
self.flush_thread.start()
def _buffer_flushing_loop(self):
"""Loop that periodically flushes the buffer"""
while self.running:
time.sleep(self.flush_interval)
if self.data_buffer:
self._flush_buffer()
def _flush_buffer(self):
"""Flush buffer to storage with regulatory compliance"""
if not self.data_buffer:
return
# Apply regulatory compliance checks
compliant_data = []
for data in self.data_buffer:
if self.compliance.check_data_storage_compliance(data):
compliant_data.append(data)
# Store compliant data
self._store_data(compliant_data)
# Clear buffer
self.data_buffer = []
def _store_data(self, data_points):
"""Store data points in compliant storage"""
# Implementation would store in regulated database
pass
def get_historical_data(self, exchange, symbol, start_date, end_date):
"""
Get historical data with regulatory compliance
Returns:
DataFrame of historical data
"""
# Check compliance
if not self.compliance.check_historical_data_access(exchange, symbol):
raise RegulatoryViolationError(
f"Historical data access for {symbol} not compliant"
)
# Get data (implementation would connect to historical data source)
# This is a simplified example
dates = pd.date_range(start=start_date, end=end_date)
prices = [100 + random.gauss(0, 2) for _ in dates]
return pd.DataFrame({
'timestamp': dates,
'price': prices,
'volume': [random.randint(1000, 10000) for _ in dates]
})
def stop(self):
"""Stop all connections and buffer flushing"""
self.running = False
# Close all WebSocket connections
for conn in self.connections.values():
if 'websocket' in conn:
conn['websocket'].close()
# Flush remaining data
if self.data_buffer:
self._flush_buffer()
```
#### **2. Regulatory Compliance System**
```python
# regulatory_compliance.py
from datetime import datetime, timedelta
class FinancialCompliance:
def __init__(self):
# Regulatory requirements by jurisdiction
self.regulations = {
'sec': self._sec_rules(),
'finra': self._finra_rules(),
'mifid_ii': self._mifid_ii_rules(),
'gdpr': self._gdpr_rules()
}
self.user_permissions = {}
self.data_access_log = []
def _sec_rules(self):
"""SEC regulatory requirements"""
return {
'market_data_access': {
'allowed_exchanges': ['nyse', 'nasdaq', 'amex'],
'allowed_data_types': ['price', 'volume', 'trades'],
'prohibited_data_types': ['order_book_depth', 'individual_trades'],
'rate_limits': {
'requests_per_minute': 100
}
},
'data_storage': {
'retention_period': timedelta(days=30),
'encryption_required': True,
'audit_trail_required': True
},
'user_requirements': {
'certification_required': True,
'supervision_required': True
}
}
def _finra_rules(self):
"""FINRA regulatory requirements"""
return {
'market_data_access': {
'allowed_exchanges': ['nyse', 'nasdaq', 'amex', 'arca'],
'allowed_data_types': ['price', 'volume', 'trades', 'quotes'],
'prohibited_data_types': ['order_book_depth'],
'rate_limits': {
'requests_per_minute': 200
}
},
'data_storage': {
'retention_period': timedelta(days=90),
'encryption_required': True,
'audit_trail_required': True
},
'user_requirements': {
'certification_required': True,
'supervision_required': True
}
}
def _mifid_ii_rules(self):
"""MiFID II regulatory requirements"""
return {
'market_data_access': {
'allowed_exchanges': ['lse', 'euronext', 'deutsche_boerse'],
'allowed_data_types': ['price', 'volume', 'trades', 'quotes'],
'prohibited_data_types': [],
'rate_limits': {
'requests_per_minute': 150
}
},
'data_storage': {
'retention_period': timedelta(days=7),
'encryption_required': True,
'audit_trail_required': True
},
'user_requirements': {
'certification_required': False,
'supervision_required': True
}
}
def _gdpr_rules(self):
"""GDPR requirements for financial data"""
return {
'market_data_access': {
'allowed_data_types': ['aggregated_market_data'],
'prohibited_data_types': ['personal_trading_data'],
'consent_required': True
},
'data_storage': {
'retention_period': timedelta(days=30),
'encryption_required': True,
'right_to_erasure': True
},
'user_requirements': {
'data_protection_officer': True
}
}
def check_market_data_access(self, exchange, symbols, user_id=None):
"""
Check if market data access is compliant
Returns:
Boolean indicating compliance
"""
# Determine applicable regulations
regulations = self._determine_applicable_regulations(exchange)
# Check each regulation
for reg in regulations:
if not self._check_market_data_rules(reg, exchange, symbols, user_id):
return False
return True
def _determine_applicable_regulations(self, exchange):
"""Determine which regulations apply to an exchange"""
exchange_reg_map = {
'nyse': ['sec', 'finra'],
'nasdaq': ['sec', 'finra'],
'amex': ['sec', 'finra'],
'lse': ['mifid_ii'],
'euronext': ['mifid_ii'],
'deutsche_boerse': ['mifid_ii'],
'binance': ['gdpr'],
'coinbase': ['gdpr', 'sec']
}
return exchange_reg_map.get(exchange, [])
def _check_market_data_rules(self, regulation, exchange, symbols, user_id):
"""Check compliance with specific market data rules"""
rules = self.regulations[regulation]['market_data_access']
# Check exchange permission
if exchange not in rules['allowed_exchanges']:
self._log_compliance_violation(
regulation,
f"Access to {exchange} not permitted"
)
return False
# Check data types (simplified)
# In reality, would analyze what data is being requested
# Check rate limits
if not self._check_rate_limits(regulation):
self._log_compliance_violation(
regulation,
"Exceeding rate limits"
)
return False
# Check user permissions
if user_id and not self._check_user_permissions(regulation, user_id):
self._log_compliance_violation(
regulation,
f"User {user_id} lacks required permissions"
)
return False
return True
def _check_rate_limits(self, regulation):
"""Check if current request stays within rate limits"""
# Implementation would track request history
return True
def _check_user_permissions(self, regulation, user_id):
"""Check if user has required permissions"""
# Check user's regulatory certifications
user = self.user_permissions.get(user_id, {})
# Check required certifications
if (self.regulations[regulation]['user_requirements'].get('certification_required') and
'regulatory_certification' not in user.get('credentials', [])):
return False
return True
def check_data_storage_compliance(self, data_point):
"""
Check if data storage complies with regulations
Returns:
Boolean indicating compliance
"""
# Determine applicable regulations
# This would analyze the data_point to determine regulations
# For simplicity, assume SEC rules apply
rules = self.regulations['sec']['data_storage']
# Check encryption
if rules['encryption_required'] and not data_point.get('encrypted'):
self._log_compliance_violation(
'sec',
"Storing unencrypted data"
)
return False
# Check retention period
if (datetime.utcnow() - data_point['timestamp']) > rules['retention_period']:
self._log_compliance_violation(
'sec',
"Exceeding data retention period"
)
return False
return True
def check_historical_data_access(self, exchange, symbol):
"""
Check if historical data access is compliant
Returns:
Boolean indicating compliance
"""
# Determine applicable regulations
regulations = self._determine_applicable_regulations(exchange)
# Check each regulation
for reg in regulations:
if not self._check_historical_data_rules(reg, exchange, symbol):
return False
return True
def _check_historical_data_rules(self, regulation, exchange, symbol):
"""Check compliance with historical data access rules"""
# Implementation would check specific historical data rules
return True
def _log_compliance_violation(self, regulation, violation):
"""Log compliance violation for auditing"""
self.data_access_log.append({
'timestamp': datetime.utcnow().isoformat(),
'regulation': regulation,
'violation': violation,
'severity': 'high'
})
print(f"COMPLIANCE VIOLATION: {regulation} - {violation}")
```
---
## **5. Image and Video Content Extraction at Scale** 🖼️
Extracting and analyzing visual content requires specialized techniques beyond traditional web scraping.
### **Computer Vision for Content Analysis**
#### **1. Image Analysis Pipeline**
```python
# image_analysis.py
import cv2
import numpy as np
import requests
from io import BytesIO
from PIL import Image
import pytesseract
import tensorflow as tf
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
class ImageAnalysisPipeline:
def __init__(self, object_detection_model='yolov5',
text_recognition=True, nsfw_detection=True):
self.object_detection_model = self._load_object_detection_model(object_detection_model)
self.text_recognition = text_recognition
self.nsfw_detection = nsfw_detection
self.nsfw_classifier = self._load_nsfw_classifier() if nsfw_detection else None
def _load_object_detection_model(self, model_name):
"""Load object detection model"""
if model_name == 'yolov5':
# In practice, would load YOLOv5 model
return lambda img: self._mock_yolo_detection(img)
elif model_name == 'ssd':
# In practice, would load SSD model
return lambda img: self._mock_ssd_detection(img)
else:
raise ValueError(f"Unsupported object detection model: {model_name}")
def _load_nsfw_classifier(self):
"""Load NSFW classification model"""
# In practice, would load a pre-trained NSFW model
return lambda img: self._mock_nsfw_classification(img)
def _mock_yolo_detection(self, image):
"""Mock YOLO object detection for demonstration"""
# Return mock detection results
return [
{'label': 'person', 'confidence': 0.95, 'bbox': [100, 50, 200, 300]},
{'label': 'car', 'confidence': 0.85, 'bbox': [300, 100, 150, 100]}
]
def _mock_ssd_detection(self, image):
"""Mock SSD object detection for demonstration"""
return [
{'label': 'person', 'confidence': 0.92, 'bbox': [105, 55, 195, 295]},
{'label': 'car', 'confidence': 0.82, 'bbox': [305, 105, 145, 95]}
]
def _mock_nsfw_classification(self, image):
"""Mock NSFW classification for demonstration"""
return {
'sexual': 0.1,
'drawing': 0.05,
'hentai': 0.02,
'porn': 0.01,
'sexy': 0.03
}
def download_image(self, url, timeout=10):
"""
Download image from URL
Returns:
PIL Image object
"""
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
print(f"Error downloading image {url}: {str(e)}")
return None
def preprocess_image(self, image, target_size=(224, 224)):
"""
Preprocess image for analysis
Returns:
Preprocessed image array
"""
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize
image = image.resize(target_size)
# Convert to array
image_array = img_to_array(image)
# Preprocess for model
return preprocess_input(image_array)
def extract_text(self, image):
"""
Extract text from image using OCR
Returns:
Extracted text
"""
if not self.text_recognition:
return ""
# Convert PIL image to OpenCV format
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Convert to grayscale
gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
# Apply thresholding
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Perform OCR
text = pytesseract.image_to_string(thresh)
return text.strip()
def detect_objects(self, image):
"""
Detect objects in image
Returns:
List of detected objects with labels and bounding boxes
"""
# Convert PIL image to array
image_array = np.array(image)
# Run object detection
return self.object_detection_model(image_array)
def classify_nsfw(self, image):
"""
Classify image for NSFW content
Returns:
NSFW classification scores
"""
if not self.nsfw_detection:
return None
# Convert PIL image to array
image_array = np.array(image)
# Run NSFW classification
return self.nsfw_classifier(image_array)
def analyze_image(self, url=None, image=None):
"""
Analyze image from URL or PIL Image object
Returns:
Dictionary of analysis results
"""
# Download image if URL provided
if url and not image:
image = self.download_image(url)
if not image:
return None
# Get image dimensions
width, height = image.size
# Extract text
text = self.extract_text(image) if self.text_recognition else ""
# Detect objects
objects = self.detect_objects(image)
# NSFW classification
nsfw_scores = self.classify_nsfw(image) if self.nsfw_detection else None
return {
'url': url,
'dimensions': {'width': width, 'height': height},
'text_content': text,
'detected_objects': objects,
'nsfw_classification': nsfw_scores,
'timestamp': datetime.utcnow().isoformat()
}
def process_batch(self, image_urls, max_workers=10):
"""
Process multiple images in parallel
Returns:
List of analysis results
"""
from concurrent.futures import ThreadPoolExecutor
results = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit tasks
future_to_url = {
executor.submit(self.analyze_image, url): url
for url in image_urls
}
# Process results as they complete
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
result = future.result()
if result:
results.append(result)
except Exception as e:
print(f"Error processing {url}: {str(e)}")
return results
```
#### **2. Video Analysis System**
```python
# video_analysis.py
import cv2
import numpy as np
import os
from moviepy.editor import VideoFileClip
from image_analysis import ImageAnalysisPipeline
class VideoAnalysisSystem:
def __init__(self, frame_skip=30, analysis_interval=5.0):
self.frame_skip = frame_skip # Process every Nth frame
self.analysis_interval = analysis_interval # Seconds between keyframe analysis
self.image_analyzer = ImageAnalysisPipeline()
def download_video(self, url, output_path=None):
"""
Download video from URL
Returns:
Path to downloaded video file
"""
if not output_path:
output_path = f"video_{int(time.time())}.mp4"
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(output_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return output_path
except Exception as e:
print(f"Error downloading video {url}: {str(e)}")
return None
def extract_keyframes(self, video_path, method='interval'):
"""
Extract keyframes from video
Returns:
List of PIL Image objects
"""
if method == 'interval':
return self._extract_by_interval(video_path)
elif method == 'scene_change':
return self._extract_by_scene_change(video_path)
else:
raise ValueError(f"Unsupported keyframe extraction method: {method}")
def _extract_by_interval(self, video_path):
"""Extract keyframes at fixed time intervals"""
clip = VideoFileClip(video_path)
frames = []
# Extract frames at specified intervals
for t in np.arange(0, clip.duration, self.analysis_interval):
frame = clip.get_frame(t)
frames.append(Image.fromarray(frame))
clip.close()
return frames
def _extract_by_scene_change(self, video_path):
"""Extract keyframes based on scene changes"""
cap = cv2.VideoCapture(video_path)
frames = []
prev_frame = None
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every Nth frame to reduce computation
if frame_count % self.frame_skip == 0:
# Convert to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect scene changes
if prev_frame is not None:
diff = cv2.absdiff(prev_frame, gray)
non_zero_count = np.count_nonzero(diff)
# If significant difference, consider it a scene change
if non_zero_count > (gray.size * 0.2):
frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
prev_frame = gray
frame_count += 1
cap.release()
return frames
def analyze_video(self, url=None, video_path=None):
"""
Analyze video from URL or file path
Returns:
Dictionary of video analysis results
"""
# Download video if URL provided
if url and not video_path:
video_path = self.download_video(url)
if not video_path:
return None
# Extract keyframes
keyframes = self.extract_keyframes(video_path)
# Analyze keyframes
frame_analysis = []
for i, frame in enumerate(keyframes):
analysis = self.image_analyzer.analyze_image(image=frame)
if analysis:
analysis['frame_index'] = i
analysis['timestamp'] = i * self.analysis_interval
frame_analysis.append(analysis)
# Get video metadata
clip = VideoFileClip(video_path)
metadata = {
'duration': clip.duration,
'fps': clip.fps,
'size': (clip.w, clip.h),
'codec': clip.reader.infos.get('codec', 'unknown')
}
clip.close()
# Clean up downloaded video
if url and video_path:
os.remove(video_path)
return {
'metadata': metadata,
'keyframe_analysis': frame_analysis,
'timestamp': datetime.utcnow().isoformat()
}
def extract_product_appearances(self, video_analysis, product_logos):
"""
Extract product appearances from video analysis
Returns:
List of product appearance events
"""
appearances = []
for frame in video_analysis['keyframe_analysis']:
for obj in frame['detected_objects']:
if obj['label'] in product_logos and obj['confidence'] > 0.7:
appearances.append({
'timestamp': frame['timestamp'],
'product': obj['label'],
'confidence': obj['confidence'],
'bbox': obj['bbox']
})
return appearances
def summarize_video_content(self, video_analysis):
"""
Create content summary from video analysis
Returns:
Content summary string
"""
# Extract main objects
object_counts = {}
for frame in video_analysis['keyframe_analysis']:
for obj in frame['detected_objects']:
object_counts[obj['label']] = object_counts.get(obj['label'], 0) + 1
# Get top objects
top_objects = sorted(
object_counts.items(),
key=lambda x: x[1],
reverse=True
)[:5]
# Extract text content
all_text = " ".join(
frame['text_content']
for frame in video_analysis['keyframe_analysis']
if frame['text_content']
)
return {
'main_objects': [obj[0] for obj in top_objects],
'object_frequency': {obj[0]: obj[1] for obj in top_objects},
'text_summary': self._summarize_text(all_text),
'total_duration': video_analysis['metadata']['duration']
}
def _summarize_text(self, text, max_sentences=3):
"""Create simple text summary"""
if not text:
return ""
# Split into sentences
sentences = re.split(r'(?<=[.!?]) +', text)
# Return top sentences by length (simple heuristic)
return " ".join(sorted(sentences, key=len, reverse=True)[:max_sentences])
```
## Continued in next section ..