# MSP-AI Meeting > [name=周惶振] > [time=Fri, Apr 2, 2021 5:47 AM] # [Meeting Link](https://www.google.com/url?q=https://teams.microsoft.com/l/meetup-join/19%253ameeting_NDU2NTFiMjgtOWQ5Yy00MjdiLTgzOTMtNThkYzkxNjU3ODk2%2540thread.v2/0?context%3D%257b%2522Tid%2522%253a%25228d281d1d-9c4d-4bf7-b16e-032d15de9f6c%2522%252c%2522Oid%2522%253a%25225a25d468-070a-47f7-b497-298163e08cca%2522%257d&sa=D&source=calendar&ust=1617745445611000&usg=AOvVaw2goKmvb2H_31mg9o34rjvM) - [Server Setup](https://docs.google.com/document/d/13sM-6Y-o_03JxaEzu0fiWIZXKzKYWzB8JJGFFz5_vHA/edit) - [Meeting](https://teams.microsoft.com/l/meetup-join/19%3ameeting_NGFiZWVmMGItNWEyYS00MTFlLWIzMTgtZjkyZTNlMzYyZjRm%40thread.v2/0?context=%7b%22Tid%22%3a%228d281d1d-9c4d-4bf7-b16e-032d15de9f6c%22%2c%22Oid%22%3a%220637d254-c6ff-4eb9-bd61-a2997b9488bc%22%7d) # Paper ## 2021~2022 Fall - [] [12/02 Labelling unlabelled videos from scratch with multi-modal self-supervision](https://arxiv.org/pdf/2006.13662.pdf) - [] [11/04 Online Continual Learning from Imbalanced Data](http://proceedings.mlr.press/v119/chrysakis20a.html) - - [] [10/14 Self-supervised Co-training for Video Representation Learning] - https://www.robots.ox.ac.uk/~vgg/research/CoCLR/ - [] [10/07] - [] [09/30 Automatic Shortcut Removal for Self-Supervised Representation Learning](https://arxiv.org/pdf/2002.08822.pdf) - [ ] Summary - [ ] Contribtuion - [ ] Strength * Novelty * Contribtuion * I can use * - [ ] Weakness * What needs more - [ ] [09/09 Audio-Visual Instance Discrimination with Cross-Modal Agreement](https://openaccess.thecvf.com/content/CVPR2021/papers/Morgado_Audio-Visual_Instance_Discrimination_with_Cross-Modal_Agreement_CVPR_2021_paper.pdf) - [ ] Strength * Novelty * Contribtuion * I can use * - [ ] Weakness * What needs more * - [ ] # 2020~2021 Spring - [ ] [08/05 CVPR' 2018 End-to-End Incremental Learning](https://openaccess.thecvf.com/content_ECCV_2018/papers/Francisco_M._Castro_End-to-End_Incremental_Learning_ECCV_2018_paper.pdf) - [ ] Background - [ ] Novelty - [ ] Distilla loss - [ ] [07/29] - [ ] [07/01 CVPR 2020': S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation](https://arxiv.org/pdf/2005.11437.pdf) * Background Knowledge: * Time-varying * motion * Time-invariant * objects * timbre of speakers * Benefits of learning disentangled representations * More explainable * Easier and more efficient to manipulate data gen- eration * Disentangled Sequential Data Generation * Self-Supervised Learning * Intrinsic labels * Auxiliary data * Off-the-shelf tools * Variational inference * Main Challenges: * Label is too expensive * Unsurvised learning is hard to perform well * Main Novelty: * Leverage supervisory signals from intrinsic la- bels to regularize the static representation and off-the-shelf tools to regularize the dynamic representation * Model both the prior and the posterior of zt by recurrent models independently -> consistent dynamic information in synthetic sequences * Ensure full disentanglement of zf and zt by posterior factorization * Contributions: * Fewer works have explored representation disentanglement for sequential data generation * Proposed Approach: * - [ ] [06/24 NeurIPS 2020': Causal Intervention for Weakly-Supervised Semantic Segmentation](https://arxiv.org/pdf/2009.12547.pdf) * Background Knowledge: * Classification Activation Map (CAM) * Pseudo-Masks * associates non-causal but positively correlated pixels to labels * disassociates causal but negatively correlated ones * multi-label soft-margin loss: [A mixed objective optimization network for the recognition of facial attributes](https://www.researchgate.net/profile/Manuel-Guenther/publication/301838380_MOON_A_Mixed_Objective_Optimization_Network_for_the_Recognition_of_Facial_Attributes/links/59fca36faca272347a220b97/MOON-A-Mixed-Objective-Optimization-Network-for-the-Recognition-of-Facial-Attributes.pdf) * Graphical model vs Graph model * [Graphical model](https://zh.wikipedia.org/zh-tw/%E5%9C%96%E6%A8%A1%E5%BC%8F) * Main Challenges: * Main Novelty and Contributions: * Context Adjustment (CONTA) * Proposed Approach: - [ ] [06/17 WACV 2021': Class-incremental Learning via Deep Model Consolidation](https://openaccess.thecvf.com/content_WACV_2020/papers/Zhang_Class-incremental_Learning_via_Deep_Model_Consolidation_WACV_2020_paper.pdf) * Main Challenges: * Main Novelty and Contributions: * Proposed Approach: * Step1: To train a (t − s)-class classifier using training data Dnew, which we refer as the new model $f_{new}(x; Θnew)$ * Step2: To consolidate the old model and the new model (Deep Model Consolidation (DMC) for image classification) * Similarity: Federated learning ![](https://i.imgur.com/cC5FcaH.jpg) ![](https://i.imgur.com/zJKQmhY.jpg) ![](https://i.imgur.com/CasK7qO.jpg) ![](https://i.imgur.com/i8V6UNB.jpg) ![](https://i.imgur.com/jrk9o9E.jpg) - [ ] [06/10 CVPR 2019': Learning a Unified Classifier Incrementally via Rebalancing](https://openaccess.thecvf.com/content_CVPR_2019/papers/Hou_Learning_a_Unified_Classifier_Incrementally_via_Rebalancing_CVPR_2019_paper.pdf) * Main Challenges: * Incremental Learning: * Preserve parameters of the orignal model * Catastropic forgetting ![](https://i.imgur.com/oX5bWUd.jpg) * Main Novelty and Contributions: * For catastropic forgetting: * Cosine-norm * ![](https://i.imgur.com/jpmr6Ue.jpg) * Less-forget constraint * ![](https://i.imgur.com/JCf25WH.jpg) * Inter-class separation * ![](https://i.imgur.com/Qcz9EPw.jpg) - [ ] [06/03 ICLR 2021': RETHINKING THE ROLE OF GRADIENT-BASED ATTRIBUTION METHODS FOR MODEL INTERPRETABILITY](https://openreview.net/pdf/b29e31cf78e011a59f9e49950670211d4c516b00.pdf) * Simpler: * [Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps](https://arxiv.org/pdf/1312.6034.pdf) * * Interpretability vs prior * * Prior 、Posterior 和Likelihood - [ ][05/28 On the uncertainty of self-supervised monocular depth estimation](https://openaccess.thecvf.com/content_CVPR_2020/papers/Poggi_On_the_Uncertainty_of_Self-Supervised_Monocular_Depth_Estimation_CVPR_2020_paper.pdf) * Uncertainty modeling methods (how reliable on your predictions) - Mean and Variance - ![](https://i.imgur.com/7z5diFv.png) - [Cosine Scheduling](https://arxiv.org/pdf/1608.03983v5.pdf) - Uncertainty metric: - Area Under the Sparsification Error (AUSE) - Area Under the Random Gain (AURU) (higher is better) - [ ] [Attention-Based Models for Speech Recognition](https://arxiv.org/pdf/1506.07503.pdf) - [ ] Adaptive Learning Rate Algorithm - [ ] Use sigmoid to apply on attention - [ ] Optimizer: - [ ] Older: AdaDelta - [ ] Adam - [ ] - [ ] [中文](https://zhuanlan.zhihu.com/p/54172131) - [ ] 其他參考資料: - [ ] [Neural Turing Machines](https://arxiv.org/pdf/1410.5401v2.pdf) - [ ] [李宏毅老師](http://speech.ee.ntu.edu.tw/~tlkagk/courses/DLHLP20/ASR%20(v12).pdf) - [ ] [Teaching a GAN what not to learn](https://arxiv.org/pdf/2010.15639.pdf) - [ ] [知乎](https://zhuanlan.zhihu.com/p/279113851) - [ ] [Github](https://githubmemory.com/repo/DarthSid95/RumiGANs) - [ ] Frechet inception distance (FID) socres - [ ] [紀錄Miro](https://miro.com/app/) - [ ] [Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning] - [ ] Novelty - [ ] No negative smaples - [ ] Self-supervised - [ ] Bootstrap Method,Bootstrapping - [] [Deep Adversarial Metric Learning] - ![](https://i.imgur.com/cAPLCsH.jpg) - [ ][強baseline-A Metric Learning Reality Check](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700681.pdf) - [ ][Metric Learning Survey](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700681.pdf) - [ ][A tutorial on distance metric learning: Mathematical foundations,algorithms, experimental analysis, prospects and challenges](https://reader.elsevier.com/reader/sd/pii/S0925231220312777?token=959EAF77DFB880FF5E4DBE3A3B0BF1D85D7DA8CFF6E1A2A51741860B9A4BA6FD724534EE77502AE4B943726995178C9F&originRegion=us-east-1&originCreation=20210422225727) - [ ][Learning to Self-Train for Semi-Supervised Few-Shot Classification](https://proceedings.neurips.cc/paper/2019/file/bf25356fd2a6e038f1a3a59c26687e80-Paper.pdf) - Use non-linear distance - Linear Mahlanobis distance - Large margin nearest neighbor - [] [Novelty] - Generate synthetic negative examples - Goal - ![](https://i.imgur.com/z6vJwNL.jpg) - ![](https://i.imgur.com/HMU89WM.jpg) - ![](https://i.imgur.com/oRRHu1X.jpg) - Other Refs. - [Introduce](http://contrib.scikit-learn.org/metric-learn/introduction.html) - [Survey](file:///C:/Users/User/Desktop/symmetry-11-01066-v2.pdf) - [Deep Metric Learning with Graph Consistency](https://www.aaai.org/AAAI21Papers/AAAI-1310.ChenB.pdf) - [FOCAL: EFFICIENT FULLY-OFFLINE METAREINFORCEMENT LEARNING VIA DISTANCE METRIC LEARNING AND BEHAVIOR REGULARIZATION](https://openreview.net/attachment?id=8cpHIfgY4Dj&name=pdf) - [UNSUPERVISED DOMAIN ADAPTATION FOR DISTANCE METRIC LEARNING](https://openreview.net/pdf?id=BklhAj09K7) - [Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies](https://papers.nips.cc/paper/2020/file/ce016f59ecc2366a43e1c96a4774d167-Paper.pdf) - [ ] [RANet: Region Attention Network for Semantic Segmentation](https://papers.nips.cc/paper/2020/file/9fe8593a8a330607d76796b35c64c600-Paper.pdf) - [Supplemental](https://papers.nips.cc/paper/2020/file/9fe8593a8a330607d76796b35c64c600-Supplemental.pdf) - Main Goal: - Classifying each pixel in an image to a class label - Important task for understanding images - Main idea: - ![](https://i.imgur.com/SULGMNv.jpg) - Method: - ![](https://i.imgur.com/ahsnbdV.jpg) - Region Construction Block - ![](https://i.imgur.com/Jpzvsc1.jpg) - ![](https://i.imgur.com/bci4oHi.jpg) - ![](https://i.imgur.com/7y5c0ml.jpg) - $G_{ij}$ = -1,0,1 - [ ] [Stand-Alone Self-Attention in Vision Models](https://papers.nips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf) ![](https://i.imgur.com/NjVuQZh.jpg) - [Another Paper:Attention Augmented Convolutional Networks](https://arxiv.org/pdf/1904.09925.pdf) - [ ] Novelty: - Replace CNN with attention - Specialized Layer for images - Spatially localized features - Translation invariance - Less memory and computations - Create a stand-alone model using only self-attetnion - ![](https://i.imgur.com/izs9vrL.jpg) - ![](https://i.imgur.com/slN2YfT.jpg) - [ ] Results: - [ ] To show the efficiency of models - ![](https://i.imgur.com/HYNPyn1.jpg)