# Easiest Cuda, cuDNN installation tutorial for Deep learning(Keras/TensorFlow) ## Nvidia Drivers $sudo add-apt-repository ppa:graphics-drivers $sudo apt-get update then intsall the driver in Ubuntu settings -> Software and update-> Additional driver. ## Cuda [CUDA 9 DOWNLOAD Link](https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux) (Recommend) 1. choose the OSversion and click **deb(network)** 2. then run the instructions below $ sudo dpkg -i cuda-repo-ubuntu1604_9.0.176-1_amd64.deb` $ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub` $sudo apt-get update` $sudo apt-get install cuda=9.0.176-1 `cuda=9.0.176-1` need to be corrsponded the downloaded deb file `cuda-repo-ubuntu1604_9.0.176-1_amd64.deb`. <font size=3 color=red>DO NOT USE</font> `sudo apt-get install cuda`, it maybe install other version of cuda. 3. edit `~/.bashrc` and add the text below ```console #CUDA settings export PATH=/usr/local/cuda-9.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH ``` ## cuDNN [cuDNN DOWNLOAD Link](https://developer.nvidia.com/rdp/form/cudnn-download-survey) Download the cudnn with corresponding <font size=3 color=red>cuda version supported!</font> * For example if you downloaded CUDA 9.0, then click Download cuDNN v7.3.1 (Sept 28, 2018), for CUDA 9.0 1. sign in and download the 3 files * cuDNN vx.x.x Runtime Library for Ubuntuxx.xx (Deb) * cuDNN vx.x.x Developer Library for Ubuntuxx.xx (Deb) * cuDNN vx.x.x Code Samples and User Guide for Ubuntuxx.xx (Deb) 2. run the instructions below $ sudo dpkg -i libcudnnx_x.x.x.xx-x+cudax.x_amd64.deb $ sudo dpkg -i libcudnnx-dev_x.x.x.xx-x+cudax.x_amd64.deb $ sudo dpkg -i libcudnnx-doc_x.x.x.xx-x+cudax.x_amd64.deb ## Python installations #### Anaconda [Download](https://www.anaconda.com/download/#linux) (Recommend) 1. install Python 3.6 is recommend $ bash ~/Downloads/Anaconda-versionsxxxx-Linux-x86_64.sh $ conda install python=3.6 2. create a enviroment.. $ conda create --name my-env python=3.6 3. activate the enviroment $ conda activate my-env 4. install Tensorflow $ pip install tensorflow-gpu or $ pip install tensorflow 5. install Keras $ pip install keras 5. edit `~/.bashrc` and add this(optional) ```console alias foo='conda activate my-env' ``` 4. test if it work * For tensorflow ```python import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print (sess.run(hello)) ``` * For Keras ```python import keras from keras.models import Sequential from keras.layers import Dense, Dropout def model(input_size=50): model = Sequential() model.add(Dense(50, input_dim=input_size, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(40, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(2,activation='linear')) model.add(Dense(1)) # Compile model model.compile(loss='mse', optimizer='adam') return model model = model(50) print(model.summary()) ```