---
tags: leetcode
---
# [776. Split BST](https://leetcode.com/problems/split-bst/)
---
# My Solution
## The Key Idea for Solving This Coding Question
## C++ Code
```cpp=
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode *> splitBST(TreeNode *root, int target) {
if (root == nullptr) {
return {nullptr, nullptr};
}
if (root->val <= target) {
// Because root->val is less than or equal to target,
// we need to split the right subtree. Therefore, go
// to the right subtree.
vector<TreeNode *> bstPair = splitBST(root->right, target);
// Because the right subtree (root->right) has been splited,
// we need to find the new root of the right subtree.
// Both bstPair[0] and bstPair[1] have greater node values
// than root->val, so we can pick either bstPair[0] or
// bstPair[1] to the new root of the right subtree.
// However, bstPait[1] has greater node values than target.
// Therefore, we choose bstPair[0] to be the new root of
// the right subtree.
root->right = bstPair[0];
bstPair[0] = root;
return bstPair;
}
// target < root->val is true.
// Because root->val is greater than target, we need to
// split the left subtree. Therefore, go to the left subtree.
vector<TreeNode *> bstPair2 = splitBST(root->left, target);
root->left = bstPair2[1];
bstPair2[1] = root;
return bstPair2;
}
};
```
## Time Complexity
$O(H)$
$H$ is the height of the BST.
## Space Complexity
$O(H)$
$H$ is the height of the BST.
# Miscellane
<!--
# Test Cases
```
[4,2,6,1,3,5,7]
2
```
```
[1]
1
```
```
[4,2,6,1,3,5,7]
100
```
```
[4,2,6,1,3,5,7]
0
```
-->