--- tags: leetcode --- # [298. Binary Tree Longest Consecutive Sequence](https://leetcode.com/problems/binary-tree-longest-consecutive-sequence) --- # My Solution ## Solution 1 ### The Key Idea for Solving This Coding Question DFS, recursion, post-order traversal `dfs` 傳回由 `root` ( `dfs` 的 parameter) 到 `root` 其中一個子節點的 consecutive sequence path 的長度。 ### C++ Code ```cpp= /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int longestConsecutive(TreeNode *root) { int longest = 1; dfs(root, longest); return longest; } private: // dfs returns the consecutive length from root // to one of its descendants. int dfs(TreeNode *root, int &longest) { if (root == nullptr) { return 0; } int leftLen = 1; if (root->left != nullptr) { leftLen = dfs(root->left, longest); if (root->val + 1 == root->left->val) { ++leftLen; } else { leftLen = 1; } } int rightLen = 1; if (root->right != nullptr) { rightLen = dfs(root->right, longest); if (root->val + 1 == root->right->val) { ++rightLen; } else { rightLen = 1; } } int max1 = max(leftLen, rightLen); longest = max(longest, max1); return max1; } }; ``` ### Time Complexity $O(n)$ $n$ is the number of nodes in the binary tree referred by `root`. ### Space Complexity $O(H)$ $H$ is the height of the binary tree referred by `root`. ## Solution 2 ### The Key Idea for Solving This Coding Question DFS, recursion, post-order traversal `dfs` 傳回由 `root` ( `dfs` 的第二個 parameter) 的父節點 `parent` ( `dfs` 的第一個 parameter) 到 `root` 其中一個子節點的 consecutive sequence path 的長度。 ### C++ Code ```cpp= /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int longestConsecutive(TreeNode *root) { int longest = 1; dfs(nullptr, root, longest); return longest; } private: int dfs(TreeNode *parent, TreeNode *root, int &longest) { if (root == nullptr) { return 1; } int leftLen = dfs(root, root->left, longest); int rightLen = dfs(root, root->right, longest); int localMaxLen = max(leftLen, rightLen); if (parent != nullptr) { if (parent->val + 1 == root->val) { ++localMaxLen; } else { localMaxLen = 1; } longest = max(longest, localMaxLen); return localMaxLen; } longest = max(longest, localMaxLen); return localMaxLen; } }; ``` ## Time Complexity $O(n)$ $n$ is the number of nodes in the binary tree referred by `root`. ## Space Complexity $O(H)$ $H$ is the height of the binary tree referred by `root`. # Miscellaneous [549. Binary Tree Longest Consecutive Sequence II](https://leetcode.com/problems/binary-tree-longest-consecutive-sequence-ii/)