---
tags: leetcode
---
# [109. Convert Sorted List to Binary Search Tree](https://leetcode.com/problems/convert-sorted-list-to-binary-search-tree/)
---
# My Solution
## The Key Idea for Solving This Coding Question
## C++ Code
```cpp=
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode *sortedListToBST(ListNode *head) {
if (head == nullptr) {
return nullptr;
}
if (head->next == nullptr) {
return new TreeNode(head->val);
}
ListNode *preSlow = nullptr, *slow = head, *fast = head;
while (fast != nullptr && fast->next != nullptr) {
preSlow = slow;
slow = slow->next;
fast = fast->next->next;
}
ListNode *head2 = slow->next;
slow->next = nullptr;
preSlow->next = nullptr;
TreeNode *node = new TreeNode(slow->val);
node->left = sortedListToBST(head);
node->right = sortedListToBST(head2);
return node;
}
};
```
## Time Complexity
$O(nlogn)$
* $n$ is the number of nodes in the singly linked list referenced by `head`.
## Space Complexity
$O(n)$
# Miscellaneous
<!--
# Test Cases
```
[-10,-3,0,5,9]
```
```
[]
```
```
[0]
```
```
[1,3]
```
```
[1,2,3]
```
```
[-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
```
-->