# Anaconda環境建置
## 下載最新版本的anaconda
https://www.anaconda.com/download
1. 建立虛擬環境
python選擇最新版本的前幾個版本(我選python3.9.18)

2. 從anaconda虛擬環境開啟terminal並安裝tensorflow gpu

```
conda install tensorflow-gpu
```
3. 測試tensorflow gpu是否被成功調用
安裝jupyter lab並launch,進行測試如下圖

4. 一樣從anaconda虛擬環境開啟terminal並安裝keras
```
conda install keras
```
4. AttributeError: module 'numpy' has no attribute 'object'解决方法
一樣從anaconda虛擬環境開啟terminal,輸入以下
```
pip install numpy==1.23.4
```
5. 回到jupyter lab並執行以下程式碼測試
```
from __future__ import absolute_import, division, print_function, unicode_literals
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
# import matplotlib.pyplot as plt
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
```

6. 有缺失套件時,打開該環境之terminal進行安裝。
```
conda install 你要的套件==某個版本
```
7. 查看已安裝套件與版本
```
pip list
```

可以看到tensorflow-gpu 2.6.0版本