# Anaconda環境建置 ## 下載最新版本的anaconda https://www.anaconda.com/download 1. 建立虛擬環境 python選擇最新版本的前幾個版本(我選python3.9.18) ![image](https://hackmd.io/_uploads/rkEn7k_tp.png) 2. 從anaconda虛擬環境開啟terminal並安裝tensorflow gpu ![image](https://hackmd.io/_uploads/r1b_kN6Fp.png) ``` conda install tensorflow-gpu ``` 3. 測試tensorflow gpu是否被成功調用 安裝jupyter lab並launch,進行測試如下圖 ![image](https://hackmd.io/_uploads/ry3x91OKa.png) 4. 一樣從anaconda虛擬環境開啟terminal並安裝keras ``` conda install keras ``` 4. AttributeError: module 'numpy' has no attribute 'object'解决方法 一樣從anaconda虛擬環境開啟terminal,輸入以下 ``` pip install numpy==1.23.4 ``` 5. 回到jupyter lab並執行以下程式碼測試 ``` from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np # import matplotlib.pyplot as plt print(tf.__version__) fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() train_images = train_images / 255.0 test_images = test_images / 255.0 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=10) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ``` ![image](https://hackmd.io/_uploads/Hy4XakuK6.png) 6. 有缺失套件時,打開該環境之terminal進行安裝。 ``` conda install 你要的套件==某個版本 ``` 7. 查看已安裝套件與版本 ``` pip list ``` ![image](https://hackmd.io/_uploads/H19Ee4pFT.png) 可以看到tensorflow-gpu 2.6.0版本