# Tổng n phép chia Tính $S = \left [ \frac{N}{1} \right ] + \left [ \frac{N}{2} \right ]+...+\left [ \frac{N}{N-1} \right ]+\left [ \frac{N}{N} \right ]$ Công thức: $S= 2\left ( \left [ \frac{N}{1} \right ] + \left [ \frac{N}{2} \right ]+...+\left [ \frac{N}{k} \right ] \right ) - k^2$ Với $k = [\sqrt N]$ hoclen.top C++ ```c++ #include <bits/stdc++.h> #define lli long long int using namespace std; int main() { int n; cin >> n; int k=sqrt(n); lli s=0; for (int i=1; i<=k; i++) s+=n/i; s=2*s-k*k; cout<<s; return 0; } ``` Pascal ```delphi var n,i:longint; k:integer; s:int64; begin readln(n); k:=trunc(sqrt(n)); s:=0; for i:=1 to k do s:= s + n div i; s:= 2*s - sqr(k); write(s); end. ```
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up