# Dyadic product ###### tags: `mma` `mma code snippet` `Math` `Mechanics` ```bash << Notation`; Symbolize[ ParsedBoxWrapper[ SubscriptBox["x_", "y_"]]] Symbolize[ ParsedBoxWrapper[ UnderscriptBox["x_", "_"]]] Notation[ParsedBoxWrapper[ RowBox[{"x_", "\[CircleTimes]", "y_"}]] \[DoubleLongLeftRightArrow] ParsedBoxWrapper[ RowBox[{"DyadicProduct", "[", RowBox[{"x_", ",", "y_"}], "]"}]]] Symbolize[ ParsedBoxWrapper[ SubscriptBox["x_", "1"]]] Symbolize[ ParsedBoxWrapper[ SubscriptBox["x_", "2"]]] Symbolize[ ParsedBoxWrapper[ SubscriptBox["x_", "3"]]] \!\(\*UnderscriptBox[ UnderscriptBox[\(\[CapitalIota]\), \(_\)], \(_\)]\) = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; DyadicProduct[x_, y_] := Module[{n = Length[x]}, Table[x[[i]] y[[j]], {i, 1, n}, {j, 1, n}]] ``` ![image](https://hackmd.io/_uploads/SyHESCbHxx.png) #### Testing ```bash x = RandomReal[{0, 1}, {3}] y = RandomReal[{0, 1}, {3}] (x\[TensorProduct]y) // MatrixForm ``` $$ \begin{equation} x=y \end{equation} $$ #### TODO Need to look at #jeetika results about NAIR Hybrid III drop test motion reproduction