# Dyadic product
###### tags: `mma` `mma code snippet` `Math` `Mechanics`
```bash
<< Notation`;
Symbolize[
ParsedBoxWrapper[
SubscriptBox["x_", "y_"]]]
Symbolize[
ParsedBoxWrapper[
UnderscriptBox["x_", "_"]]]
Notation[ParsedBoxWrapper[
RowBox[{"x_", "\[CircleTimes]", "y_"}]] \[DoubleLongLeftRightArrow]
ParsedBoxWrapper[
RowBox[{"DyadicProduct", "[",
RowBox[{"x_", ",", "y_"}], "]"}]]]
Symbolize[
ParsedBoxWrapper[
SubscriptBox["x_", "1"]]]
Symbolize[
ParsedBoxWrapper[
SubscriptBox["x_", "2"]]]
Symbolize[
ParsedBoxWrapper[
SubscriptBox["x_", "3"]]]
\!\(\*UnderscriptBox[
UnderscriptBox[\(\[CapitalIota]\), \(_\)], \(_\)]\) = {{1, 0, 0}, {0,
1, 0}, {0, 0, 1}};
DyadicProduct[x_, y_] :=
Module[{n = Length[x]},
Table[x[[i]] y[[j]], {i, 1, n}, {j, 1, n}]]
```

#### Testing
```bash
x = RandomReal[{0, 1}, {3}]
y = RandomReal[{0, 1}, {3}]
(x\[TensorProduct]y) // MatrixForm
```
$$
\begin{equation}
x=y
\end{equation}
$$
#### TODO Need to look at #jeetika results about NAIR Hybrid III drop test motion reproduction