###### tags: `課業` # Santa calculus problems [Answer](https://hackmd.io/@HNO2/BJBBGVMTw) ## Speedrun * $\frac{d}{dx}(\cos x)$ * $\int \sin (2x) dx$ * $\frac{d}{dx}(\tan x)$ * $\frac{d}{dx}(\tan^{-1} x)$ * $\int \cot x \csc x dx$ * $\int \sec x dx$ --- * $\frac{d}{dx}(\cot (x^2))$ * $\int \tan x dx$ * $\frac{d}{dx}(\ln x)$ * $\int_{-2}^{2} \frac{\sin (x^3)}{x^8+1} dx$ * $\int_1^2 x\lfloor 2x \rfloor dx$ * $\frac{d}{dx}(\frac{1}{x})$ --- * $\int \frac{1}{x} dx$ * $\int \sin x \cos x dx$ * $\int_0^2 \sqrt{4-x^2} dx$ * $\int \ln x dx$ * $\frac{d}{dx}({5}^{x^2})$ * If $f(x)=x^7+x^5+x^3+1$, then $(f^{-1})'(4)=$ ? --- * $\lim\limits_{x \rightarrow 0} x \sin (\frac{1}{x})$ * $\lim\limits_{x \rightarrow \infty} x \sin (\frac{1}{x})$ * $\lim\limits_{x \rightarrow 0} \frac{x}{\tan x}$ * $\lim\limits_{x \rightarrow \infty} \frac{\lfloor x \rfloor}{x}$ * $\lim\limits_{x \rightarrow \infty} x^\frac{1}{\ln x}$ * $\lim\limits_{x \rightarrow \infty} (1-\frac{2}{x})^{x}$ ## 單選 1. If the integral $\int_0^\infty(\frac {6x} {x^2+4} - \frac 1 {ax+1}) dx$ is **convergent**, find $a$. A. $\frac 1 6$ B. $\frac 1 3$ C. $3$ D. $6$ 2. Let $f(x) = \frac{(2x+1)(2x+2)\cdots(2x+n)}{(x+1)(x+2)\cdots(x+n)}$, find $f'(0)$. A. $\sum\limits_{k=1}^n \frac {1}{k}$ B. $\sum\limits_{k=1}^n k$ C. $1$ D. $2$ 3. For the $y = \frac{x^2}2$, find **arc length** for $x \in [0, 3]$: A. $\frac 3{14}$ B. $\frac{3\sqrt{10}}2 + \frac12 \ln(3+\sqrt{10})$ C. $\frac37$ D. $3\sqrt{10}$ 4. Which of the following statement is **true**? A. If $\lim \limits_{x \to 0}f(x)=0$ and $\lim \limits_{x \to 0}g(x)=2$, then $\lim \limits_{x \to 0} g(f(x))=2$. B. If $|f(x)|$ is a differentiable function on $\mathbb{R}$, then $f(x)$ is a differentiable function on $\mathbb{R}$. C. $f(x)$ is a differentiable function on $(0,1)$ and a continuous function on $[0,1]$. If $f(0)=0$, then there is a real number $a$ in $(0,1)$ such that $f'(a)=f(1)$. D. If $f(x)$ and $f'(x)$ are both differentiable functions on $\mathbb{R}$, and $f'(x)>0$ for all $x$, then $\lim\limits_{x \to \infty} f(x) = \infty$. 5. Find the largest $\delta$ such that if $0 < \lvert x-1 \rvert < \delta$ then $\lvert f(x)-1 \rvert < 0.2$, where \begin{equation} f(x) = \begin{cases} \sqrt[3]{x},\quad x \ge 1 \\ 2 - \sqrt{x}, \quad x < 1\end{cases} \end{equation} A. $\frac{19}{100}$ B. $\frac{21}{100}$ C. $\frac{9}{25}$ D. $\frac{91}{125}$ 6. Let $R$ be the region enclosed by $y = \ln (x+7), \space y = \ln (x+4), \space y = 0, \space x = t$. If $V(t)$ is the volume of the solid obtained by rotating $R$ about the **y-axis**, then the limit $\lim\limits_{t \to \infty}(\frac d{dt}V(t))$ = ? A. $2\pi$ B. $\pi$ C. $3\pi$ D. $6\pi$ 7. How many horizontal, vertical and slant **asymptotes** does the function $f(x) = \frac{5(x-2) \sqrt{x^2+1}+x^3-6x^2+9x-3}{x^2-6x+8}$ has? A. 2 B. 3 C. 4 D. 5 8. Evaluate \begin{equation} \lim_{x \rightarrow \frac{\pi}{2}} \frac{\tan(\frac{x}{2}) - \csc x}{\sin x-\cos x} \end{equation} A. $\frac 1 4$ B. $\frac {-1} 4$ C. $1$ D. $0$ 9. Assume that $f$ is continuous and satisfies the following equation \begin{equation} \lim_{n \to \infty} \frac{f(\frac{\sin x}n) + f(\frac{2\sin x}n) + \cdots + f(\frac{n\sin x}n)}{n} = \csc x \cdot e^{\sin x} \end{equation} for any real number $x \ne (n + \frac 1 2)\pi, n \in \mathbb{Z}$. Find $f(\frac 1 {\sqrt{2}})$. A. $\frac 1 {\sqrt{2}}e^{\frac 1 {\sqrt{2}}}$ B. $\sqrt{2}e^{\frac 1 {\sqrt{2}}}$ C. $\frac 1 {\sqrt{2}}e$ D. $e^{\frac 1 {\sqrt{2}}}$ 10. The area bounded by $x = 0, \space x = n^2, \space y = 0, \space y = \lfloor \sqrt{x} \rfloor$ is \begin{equation} \int^{n^2}_0 \lfloor \sqrt{x} \rfloor dx \quad n \in \mathbb{N} \end{equation} It is equivalent to A. $\frac{n(n-1)(n+1)}{2}$ B. $\frac{n(n-1)(4n+1)}{6}$ C. $\int^{n}_0 \lfloor u \rfloor du$ D. $\int^{n}_0 u\lfloor u \rfloor du$ ## 多選 11. Let $F(x),f(x)$ be two diffentiable functions on $\mathbb{R}$ and $F'(x)=f(x)$. Which of the following statements are **true**? A. If $\lim\limits_{x \rightarrow \infty} F(x)=\infty$, then $\lim\limits_{x \rightarrow \infty} f(x) > 0$. B. If $\lim\limits_{x \rightarrow \infty} f(x) > 0$, then $\lim\limits_{x \rightarrow \infty} F(x) = \infty$. C. If $F(x)\geq \frac{x^2}{2} \space \forall x \in \mathbb{R}$, then $f(x) \geq x\space \forall x \in \mathbb{R}$. D. If $f(x)\geq x \space \forall x \in \mathbb{R}$, then $F(x) \geq \frac{x^2}{2}\space \forall x \in \mathbb{R}$. 12. Consider the function below: $f(x)=\begin{cases} x \sin(\frac{1}{x^2}) & \text{if} \space x \neq0 \\ 0 & \text{if} \space x=0 \\ \end{cases}$ Which of the following statements are **true**? A. $f$ is differentiable at $x=0$. B. $f$ has infinitely many local maxima. C. $f$ has horizontal asymptotes. D. $f$ has slant asymptotes. 13. Which of the following integrals **converge**? A. $\int_0^{1} \frac{\sin \sqrt [3] x}{x} dx$ B. $\int_0^{\infty} \frac{1}{x \sqrt{x+1}} dx$ C. $\int_1^{\infty} \frac{\ln x}{x^{0.8}} dx$ D. $\int_{1}^{\infty} e^{-x^{2+ \sin x}} dx$ 14. For the parametric curve $(x(\theta), y(\theta)) = (1-\sin(\theta), \theta + \cos(\theta))$, which of the followings are **true**? <br> A. $\frac{dy}{dx} = \frac{1-\sin\theta}{\cos\theta}$ .<br> B. There are one horizontal tangent point and one vertical tangent point in $\theta \in [0, 2\pi]$. <br> C. Arc length for $\theta \in [0, \frac{\pi}{2}]$ is $2 - \sqrt 2$. <br> D. Surface area obtained by rotating it about y-Axis for $\theta \in [0, \frac{\pi}{2}]$ is $\frac{32-20\sqrt 2}{3} \pi$. 15. Which of the following statements are **true**? A. If $(a,f(a))$ is a local maximum of $f(x)$ and $f'(a)$ exists, then $f'(a)=0$. B. If $f''(a)=0$, then $(a,f(a))$ is an inflection point of $f(x)$. C. If $(a,f(a))$ is an inflection point of $f(x)$, then $(a,f'(a))$ is a local extreme value of $f'(x)$. D. If $(a,f'(a))$ is a local extreme value of $f'(x)$, then $(a,f(a))$ is an inflection point of $f(x)$. ## 計算證明 1. For the definite integral \begin{equation} \int^{\frac \pi 2}_0 \sin^n x dx \quad \text{for } n \ge 1 \end{equation} you need to: (A) Find a recursive expression of this indefinite integral. \begin{equation} I_n = \int \sin^n x dx \quad \end{equation} Hint. $I_n = (...)I_{n-2} + (...), \space (...)$ is a function about $x, \space n$. (B) Evaluate \begin{equation} \int^{\frac \pi 2}_0 \sin^n x dx \quad \text{for } n \ge 1 \end{equation} 2. For $e^y = \frac 1 {(x+1)^2}$, find: (A) The **arc length** for $x \in [\sqrt{5}-1, \sqrt{12}-1]$ (B) The **surface area** by rotating it about $x = -1$ for $x \in [1, 3]$