###### tags: `課業` # Santa calculus Answers ## Speedrun * $\frac{d}{dx}(\cos x)=-\sin x$ * $\int \sin (2x) dx=-\frac{1}{2} \cos 2x +C$ * $\frac{d}{dx}(\tan x) =\sec^2 x$ * $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ * $\int \cot x \csc x dx = -\csc x + C$ * $\int \sec x dx = \ln{|\sec x + \tan x|}+C$ --- * $\frac{d}{dx}(\cot (x^2))=- \csc ^2 x^2 \cdot 2x$ * $\int \tan x dx=-\ln {|\cos x|}+C$ * $\frac{d}{dx}(\ln x)=\frac{1}{x}$ * $\int_{-2}^{2} \frac{\sin (x^3)}{x^8+1} dx = 0$ * $\int_1^2 x\lfloor 2x \rfloor dx = 3.875$ * $\frac{d}{dx}(\frac{1}{x}) = \frac{-1}{x^2}$ --- * $\int \frac{1}{x} dx = \ln {|x|}+C$ * $\int \sin x \cos x dx = -\frac{1}{4} \cos 2x + C$ * $\int_0^2 \sqrt{4-x^2} dx = \pi$ * $\int \ln x dx=x \ln x -x+C$ * $\frac{d}{dx}({5}^{x^2})=\ln 25 \cdot {5}^{x^2} \cdot x$ * If $f(x)=x^7+x^5+x^3+1$, then $(f^{-1})'(4)=\frac{1}{15}$. --- * $\lim\limits_{x \rightarrow 0} x \sin (\frac{1}{x})=0$ * $\lim\limits_{x \rightarrow \infty} x \sin (\frac{1}{x})=1$ * $\lim\limits_{x \rightarrow 0} \frac{x}{\tan x}=1$ * $\lim\limits_{x \rightarrow \infty} \frac{\lfloor x \rfloor}{x}=1$ * $\lim\limits_{x \rightarrow \infty} x^\frac{1}{\ln x}=e$ * $\lim\limits_{x \rightarrow \infty} (1-\frac{2}{x})^{x}=\frac{1}{e^2}$ ## 單選 1. A 2. A 3. B 4. C 5. C 6. D 7. C 8. D 9. D 10. B ## 多選 11. B 12. BC 13. AD 14. BD 15. A ## 計算證明 1. (A) $I_n=\frac{-1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}$ (B) \begin{equation} \begin{cases} \frac{(n-1)(n-3)...2}{n(n-2)...1},\quad n \space \mathrm{is} \space \mathrm{odd} \\ \frac{(n-1)(n-3)...1}{n(n-2)...2}\frac{\pi}{2}, \quad n \space \mathrm{is} \space \mathrm{even}\end{cases} \end{equation} 2. (A) $1 + \ln{\frac 5 3}$ (B) $4\pi(2\sqrt{5} - \sqrt{2} + \ln{\frac{2+\sqrt 5}{1 + \sqrt 2}})$