###### tags: `海洋` # 引潮力(Tidal force) ## 定義 ## 公式推導 ### 正面向和正背向月球兩處的引潮力公式 如圖:  以相對加速度概念推導,先得 **月球對地球的萬有引力** 為 $F_e={GM_eM_m \over R^2}$ 因此,地球獲得加速度(即是地球繞地月質心轉動的向心加速度) $a_e={F_e \over M_e}={GM_m \over R^2}$ 同理,圖中紅色物體 p 的加速度即為 $a_p={F_p \over M_p}={GM_m \over {(R-R_e)^2}}$ 若此時 **人** 在 **地球** 上觀察物體 p 的加速度(即地球看p),其相對加速度為 $a_{pe}=a_p-a_e={GM_m \over {(R-R_e)^2}}-{GM_m \over R^2}$ ,其值為正。意思是人看到 p 往月球在移動。 同理,若將 p 移動至正背向月球側( $p'$ ),**人** 在 **地球** 上觀察物體 $p'$ 的加速度(即地球看 $p'$ )為 $a_{{p'}e}=a_{p'}-a_e={GM_m \over {(R+R_e)^2}}-{GM_m \over R^2}$ ,其值為負。意思是人看到 $p'$ 背離月球在移動。 但同時兩者皆是垂直離開地面移動,且 $a_p<a_e$。 最後,再將 $a_{pe}$ 及 $a_{{p'}e}$ 分別化簡,得 $a_{pe}=GM_m({1 \over {(R-R_e)^2} }-{1 \over R^2})$ ,透過二項式展開整理成($R_e << R$) $a_{pe}=GM_m({{1 \over R^2} (1+2({R_e \over R})) - {1 \over R^2} })$ ,再移向即可得到 $a_{pe}=2GM_m({R_e \over R^3})$ --- 此即 **正面向月球處的每單位質量引潮力公式** 。 同理可得 $a_{{p'}e}=-2GM_m({R_e \over R^3})$ --- 此即 **正背向月球處的每單位質量引潮力公式** 。 ### 地球表面任一點的引潮力公式  :::success ***延伸資料 : [海洋潮汐成因](http://www.phy.hk/DSE/tide.pdf)*** :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up