# Building a Document QA System with Supavec and Gaia In this article, I'll share my experience building a document-aware chat system using Supavec and Gaia, complete with code examples and practical insights. ## The Challenge Every developer who has tried to build a document Q&A system knows the pain points: - Complex document processing pipelines - Managing chunking and embeddings - Implementing efficient vector search - Maintaining context across conversations - Handling multiple file formats ## Why Gaia + Supavec? The breakthrough came when I discovered the power of combining two specialized tools: - **Supavec**: Handles document processing infrastructure - **Gaia**: Provides advanced language understanding Here's a comparison of the traditional approach versus using Supavec: ```javascript // Traditional approach - complex and error-prone const processDocumentTraditional = async (file) => { const text = await extractText(file); const chunks = await splitIntoChunks(text); const embeddings = await generateEmbeddings(chunks); await storeInVectorDB(embeddings); // Plus hundreds of lines handling edge cases }; // With Supavec - clean and efficient const uploadDocument = async (file) => { const formData = new FormData(); formData.append("file", file); const response = await fetch("https://api.supavec.com/upload_file", { method: "POST", headers: { authorization: apiKey }, body: formData }); return response.json(); }; ``` ## System Architecture The system consists of four main components: 1. **Frontend (React)** - File upload interface - Real-time chat UI - Document selection - Response rendering 2. **Backend (Express)** - Request orchestration - File handling - API integration 3. **Supavec Integration** - Document processing - Semantic search - Context retrieval 4. **Gaia Integration** - Natural language understanding - Response generation - Context synthesis ## Core Implementation Here's the chat interface that brings it all together: ```javascript export function ChatInterface({ selectedFiles }) { const [messages, setMessages] = useState([]); const handleQuestion = async (question) => { try { // Get relevant context from documents const searchResponse = await searchEmbeddings(question, selectedFiles); const context = searchResponse.documents .map(doc => doc.content) .join('\n\n'); // Generate response using context const answer = await askQuestion(question, context); setMessages(prev => [...prev, { role: 'user', content: question }, { role: 'assistant', content: answer } ]); } catch (error) { console.error('Error processing question:', error); } }; return ( <div className="chat-container"> <MessageList messages={messages} /> <QuestionInput onSubmit={handleQuestion} /> </div> ); } ``` ## Why This Approach Works Better ### 1. Intelligent Context Retrieval Instead of simple keyword matching, Supavec uses semantic search to find relevant document sections: ```javascript // Semantic search implementation const getRelevantContext = async (question, fileIds) => { const response = await fetch('https://api.supavec.com/embeddings', { method: 'POST', headers: { 'Content-Type': 'application/json', authorization: apiKey }, body: JSON.stringify({ query: question, file_ids: fileIds, k: 3 // Number of relevant chunks to retrieve }) }); return response.json(); }; ``` ### 2. Natural Response Generation Gaia doesn't just stitch together document chunks - it understands and synthesizes information: ```javascript // Example response generation const generateResponse = async (question, context) => { const response = await fetch('https://llama3b.gaia.domains/v1/chat/completions', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ messages: [ { role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' }, { role: 'user', content: `Context: ${context}\n\nQuestion: ${question}` } ] }) }); return response.json(); }; ``` ## Getting Started 1. Clone the repository: ```bash git clone https://github.com/harishkotra/gaia-supavec.git cd gaia-supavec ``` 2. Install dependencies: ```bash # Backend cd backend npm install # Frontend cd ../frontend npm install ``` 3. Configure environment variables: ```bash # backend/.env SUPAVEC_API_KEY=your_supavec_key GAIA_API=https://llama3b.gaia.domains/v1/chat/completions FRONTEND_URL=http://localhost:3000 # frontend/.env REACT_APP_API_URL=http://localhost:3001 ``` 4. Start the development servers: ```bash # Backend cd backend npm run dev # Frontend cd ../frontend npm start ``` ## Key Features 1. **Document Processing** - PDF and text file support - Automatic chunking - Efficient indexing 2. **Search Capabilities** - Semantic search - Multi-document queries - Relevance ranking 3. **User Interface** - Real-time chat - File management - Response streaming 4. **Development Features** - Hot reloading - Error handling - Request validation ## Production Considerations 1. **Scaling** - Implement caching - Add rate limiting - Configure monitoring 2. **Security** - Input validation - File type restrictions - API key management 3. **Performance** - Response streaming - Lazy loading - Request batching ## Future Improvements 1. **Enhanced Features** - [ ] Conversation memory - [ ] More file formats - [ ] Batch processing 2. **User Experience** - [ ] Progress indicators - [ ] Error recovery - [ ] Mobile optimization 3. **Developer Experience** - [ ] Better documentation - [ ] Testing utilities - [ ] Deployment guides Building a document QA system doesn't have to be complicated. By leveraging Supavec for document processing and Gaia for language understanding, we can create powerful, user-friendly systems without getting lost in implementation details. The complete code is available on GitHub, and I encourage you to try it out. ## Resources - [GitHub Repository](https://github.com/harishkotra/gaia-supavec) - [Supavec Documentation](https://docs.supavec.com) - [Gaia API Reference](https://docs.gaianet.ai) --- *Found this helpful? Follow me on [GitHub](https://github.com/harishkotra) or star the [repository](https://github.com/harishkotra/gaia-supavec) to stay updated with new features and improvements.*