{%hackmd SybccZ6XD %} # Adaptive As-Natural-As-Possible Image Stitching ###### tags: `paper` ## 3. Proposed Algorithm step - moving DLT method to estimate the local homography - linearize it in the non-overlapping regions - the computation of a global similarity transformation between the reference and the target images ### 3.1. Local Homography Model https://www.cs.cmu.edu/~16385/s17/Slides/10.2_2D_Alignment__DLT.pdf - target image and reference image: $I$ and $I'$ - matching points: $p = [x y]^T$ and $p' = [x' y']^T$ - homographic transformation: $p' = h(p)$ :::warning 補充 (cross product) ![](https://i.imgur.com/gWSze25.png) a × b = |a| |b| sin(θ) n - |a| is the magnitude (length) of vector a - |b| is the magnitude (length) of vector b - θ is the angle between a and b - n is the unit vector at right angles to both a and b ::: **homography matrix H** $\hat{p}' = H\hat{p}$ $\left [ \begin{matrix} x' \\ y' \\ 1 \\ \end{matrix} \right ]= \left [ \begin{matrix} h_1& h_2& h_3 \\ h_4& h_5& h_6 \\ h_7& h_8& h_9 \\ \end{matrix} \right ] \left [ \begin{matrix} x \\ y \\ 1 \\ \end{matrix} \right ]$ $x'= (h_1x + h_2y + h_3)$ $y'= (h_4x + h_5y + h_6)$ $1= (h_7x + h_8y + h_9)$ **divide line 1 and 2 by 3** $x'(h_7x + h_8y + h_9)= (h_1x + h_2y + h_3)$ $y'(h_7x + h_8y + h_9)= (h_4x + h_5y + h_6)$ **rearrange** $h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$ $h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$ **convert to matrix form $A_ih = 0$** ![](https://i.imgur.com/ArRRVQu.png) **estimate h (local homography at the location $p_j$)** $h_j = \mathop{argmin}\limits_{h_j}||W_jAh||^2$ **find W** high value for pixels in the neighborhood of $p_j$ and equal values for those that are very far $W = max(exp(-||p_i - p_j||^2/\sigma^2), \gamma); )$ ### 3.2. Homography Linearization :::warning 補充 (Jocabian ) https://ccjou.wordpress.com/2012/11/26/jacobian-%E7%9F%A9%E9%99%A3%E8%88%87%E8%A1%8C%E5%88%97%E5%BC%8F/ - 如果向量函數 F 的數學形式相當複雜,線性化是一個常用的簡化方法。針對單變量函數 f(x),在 x=p 附近我們可用直線 y=ax+b 近似 f(x) - 仿射變換 T 近似向量函數 F,由此衍生 F 的導數矩陣,稱為 Jacobian 矩陣 ::: the linearization of homography at any point q in the neighborhood of the anchor point p can be understood by considering the Taylor series of the homographic transformation h(q) $h(q) = h(p) + J_h(p)(q - p) + o(||q - p||)$ For the boundary a setf R anchor points $\{ p_i\} _{i=1}^R$ $h^L(q) = \sum \alpha_i(h(p_i) + J_h(p_i)(q-p_i))$