{%hackmd SybccZ6XD %}
###### tags: `paper`
# Generative Adversarial Nets
Goal
> Estimating generative models
Two parts of this framework (example)
> Generator: produce fake currency
> Discriminator: determine whether a sample is from the model distribution or the data distribution. detect the counterfeit currency.
Generator
> 
Discriminator
> 
## Algorithm
> 
Discriminator
> 
> 清楚分辨真假
> real x -> D -> 越大越好,代表Discriminator判定為真圖片
> fake G(z) -> D -> 越小越好,代表Discriminator判定為假圖片
Generator
> 
> z -> G -> fake G(z) -> D -> 越大越好,代表Discriminator判定為真圖片
Global Optimality of $p_g = p_{data}$
> For discriminator
> 
> the function y → a log(y) + b log(1 − y) achieves its maximum in [0, 1] at $\frac{a}{a + b}$