{%hackmd SybccZ6XD %} ###### tags: `paper` # Generative Adversarial Nets Goal > Estimating generative models Two parts of this framework (example) > Generator: produce fake currency > Discriminator: determine whether a sample is from the model distribution or the data distribution. detect the counterfeit currency. Generator > ![](https://hackmd.io/_uploads/ryyaq8Grn.png) Discriminator > ![](https://hackmd.io/_uploads/Sy6msLzH3.png) ## Algorithm > ![](https://hackmd.io/_uploads/SybQ2LfHn.png) Discriminator > ![](https://hackmd.io/_uploads/H1QA3IMH2.png) > 清楚分辨真假 > real x -> D -> 越大越好,代表Discriminator判定為真圖片 > fake G(z) -> D -> 越小越好,代表Discriminator判定為假圖片 Generator > ![](https://hackmd.io/_uploads/rywx08GH2.png) > z -> G -> fake G(z) -> D -> 越大越好,代表Discriminator判定為真圖片 Global Optimality of $p_g = p_{data}$ > For discriminator > ![](https://hackmd.io/_uploads/HyEYALMr3.png) > the function y → a log(y) + b log(1 − y) achieves its maximum in [0, 1] at $\frac{a}{a + b}$