{%hackmd SybccZ6XD %} ###### tags: `paper` # CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features Previous method > regional dropout remove informative pixels on training images by overlaying a patch of either black pixels or random noise Why previous is useless? > Information loss Algorithm > ![](https://hackmd.io/_uploads/rJUKHFoEn.png) > Sample box coordinates B = ($r_x, r_y, r_w, r_h$) > Cropped ratio: $\frac{r_wr_h}{WH} = 1 - \lambda$ > ![](https://hackmd.io/_uploads/S18UvtiE2.png) Why this method is useful > **Diverse training samples** reduce overfitting > ![](https://hackmd.io/_uploads/BypBuFjNh.png)