{%hackmd @themes/dracula %}  Goal: controllable GAN Face GAN original GAN: can't control the feature of image focus on how to generate the high-quality images  ==controllable GAN== 3DMM  https://arxiv.org/abs/2004.11660 issue: synthetic-to-real domain gap 在3DMM model 的範圍有可能會不夠 proposed method  ==Disentanglement by contrastive learning==  the latent space is divided into sub-spaces, each encoding a different image property. **latent space** original batch |latent space |- |$z_1$ |$z_2$ |$z_3$ |$z_4$ |$z_5$ |$z_6$ cut original batch |pose|expression|color |-|-|- |$z_1^1$|$z_1^2$|$z_1^3$ |$z_2^1$|$z_2^2$|$z_2^3$ |$z_3^1$|$z_3^2$|$z_3^3$ |$z_4^1$|$z_4^2$|$z_4^3$ |$z_5^1$|$z_5^2$|$z_5^3$ |$z_6^1$|$z_6^2$|$z_6^3$ modify to |pose|expression|color |-|-|- |$z_1^1$|$z_1^2$|$z_1^3$ |**$z_1^1$**|$z_2^2$|$z_2^3$ |$z_3^1$|$z_3^2$|$z_3^3$ |$z_4^1$|**$z_3^2$**|$z_4^3$ |$z_5^1$|$z_5^2$|$z_5^3$ |$z_6^1$|$z_6^2$|**$z_5^3$** **attribute distance** $d_k(I_i, I_j) = dist(M_k(I_i), M_k(I_j))$ $I$: output of generator :::success $M_k: I -> \mathbb{R}^{D_k}$ ID: ArcFace [14] head-pose: HopeNet [18] Expression: RSR [20] Illumination: R-Net [9] Age: Dex [17] Hair color: PSPNet [21] ::: :::success $dist$ L1 L2 consine-distance ::: **contrastive loss component for attribute k** $l_k(z_i, z_j) = \begin{cases} \frac{1}{C_k^+}max(d_k(I_i, I_j) - \tau_k^+, 0), & z_i^k = z_j^k \\\frac{1}{C_k^-}max(\tau_k^--d_k(I_i, I_j), 0), & otherwise \end{cases}$ $C_k^+ = \sum_{i,j}\mathbb{I}\{z_i^k = z_j^k\}$ $C_k^- = \sum_{i,j}\mathbb{I}\{z_i^k = z_j^k\}$ **contrastive loss**  ==Interpretable explicit control==   dataset {y, w} ==Inference==  ## experiment FHHQ dataset [29] downsample to 512x512 resolution **FID**    **control precision**   **Qualitative evaluation**  
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up