# EC Fin (6/13) <style> .markdown-body li + li { padding-top: 0 !important; } </style> --- [TOC] --- ## Important Electrical Units | Quantity | Q. Symbol | Unit | U. Symbol | Dimensions | | ----------- | --------- | ------- | -------------- | ----------------- | | Current | $I$ | Ampere | $A$ | $C\ /\ s$ | | Charge | $Q$ | Coulomb | $C$ | $A \cdot s$ | | Voltage | $V$ | Volt | $V$ | $J\ /\ C$ | | Resistance | $R$ | Ohm | $\Omega$ | $V\ /\ A$ | | Conductance | $G$ | 1 / Ohm | $1\ /\ \Omega$ | $1\ /\ \Omega$ | | Energy | $W$ | Joule | $J$ | | | Power | $P$ | Watt | $W$ | $J\ /\ s$ | | Capacity | $C$ | Farad | $F$ | $C\ /\ V$ | | Inductance | $L$ | Henry | $H$ | $V\ /\ (A\ /\ s)$ | ## Ch.9 - RC Circuits: - ![](https://i.imgur.com/CGu0vru.png =200x) - The current has the same shape as $V_R$. - Time Constant: $$\tau = RC,\ 1\ s = 1\ \Omega \times 1\ F$$ - $$v = v_C = V_F + (V_i - V_F) e^{- \frac{t}{RC}}$$ - Capacitive Reactance: $$X_C = \frac{1}{2 \pi f C},\ Z_C = \frac{1}{j \omega C} = \frac{1}{j 2 \pi f C}$$ - Voltage and current are always $90^\circ$ out of phase ![](https://i.imgur.com/Fql881B.png =300x) - Reactive Power ($VAR$: Voltage-Ampere Reactive): - Power supply filtering ## Ch.10 ### Series RC circuits - Impedance: - ![](https://i.imgur.com/KOeCt5p.png =400x) - ![](https://i.imgur.com/zyOV5pc.png =150x) - $$Z = \sqrt{R^2 + X_C^2},\ \theta = \tan^{-1}{\left(\frac{X_C}{R}\right)}$$ - Ohm's Law: - $$V = IZ$$ - $$V_Z = IZ,\ V_C = IX_C$$ - ![](https://i.imgur.com/J02zDFb.png =150x)![](https://i.imgur.com/v8BmYgr.png =250x) - ![](https://i.imgur.com/ABK3Ol1.png =200x)![](https://i.imgur.com/XbHFYFq.png =400x) - Variation of phase angle with frequency: - ![](https://i.imgur.com/GbgaUHa.png =200x) - Power factor: - $$PF = \cos{\theta}$$ - ![](https://i.imgur.com/5Ut2xRO.png =200x) - Apparent power consists of two components; a true power component, that does the work, and a reactive power component, that is simply power shuttled back and forth between source and load. - Low-Pass Filter: - ![](https://i.imgur.com/FSL9BAD.png =550x) - $$V_{out} = \frac{Z}{R + Z} V_{in} \Rightarrow V_{out} = \frac{1/j\omega C}{R + 1/j\omega C} V_{in} \Rightarrow |V_{out}| = \frac{1}{\sqrt{(2\pi fRC)^2 + 1}} |V_{in}|$$ - Cutoff Frequency (3dB or half-power frequency): - $$\frac{1}{\sqrt{(2\pi f_CRC)^2 + 1}} = \frac{1}{\sqrt{2}} \Rightarrow f_C = \frac{1}{2\pi RC}$$ - High-Pass Filter: - ![](https://i.imgur.com/UZjrEEE.png =550x) - $$V_{out} = \frac{R}{R + Z} V_{in} \Rightarrow V_{out} = \frac{R}{R + 1/j\omega C} V_{in} \Rightarrow |V_{out}| = \frac{2\pi fRC}{\sqrt{(2\pi fRC)^2 + 1}} |V_{in}|$$ - Cutoff Frequency (3dB or half-power frequency): - $$\frac{2\pi f_CRC}{\sqrt{(2\pi f_CRC)^2 + 1}} = \frac{1}{\sqrt{2}} \Rightarrow f_C = \frac{1}{2\pi RC}$$ ### Parallel RC circuits - Conductance: $G$ Capacitive Susceptance: $B_C$ Admittance: $Y$ $$G = \frac{1}{R},\ B_C = \frac{1}{X_C},\ Y = \frac{1}{Z}$$ - ![](https://i.imgur.com/QZSRE9Q.png =150x) $$Y = \sqrt{G^2 + B_C^2},\ \theta = \tan^{-1}{\left(\frac{B_C}{G}\right)}$$ - Ohm's Law: - $$V = IZ = \frac{I}{Y}$$ - ![](https://i.imgur.com/NKBfU6Q.png =300x) - Equivalent series RC circuits: - $$R_{(eq)} = Z\cos{\theta},\ X_{C(eq)} = Z\sin{\theta}$$ ## Ch.11 - Inductors: - $$L = \frac{V}{I\ /\ t},\ 1\ H = \frac{1\ V}{1\ A\ /\ 1\ s}$$ - $$L = \mu_0 \frac{N^2 A}{l}$$ - Faraday's Law: - The amount of voltage induced in a coil is directly proportional to the rate of change of the magnetic field with respect to the coil. - Lenz's Law: - When the current through a coil changes and an induced voltage is created as a result of the changing magnetic field, the direction of the induced voltage is such that it always opposes the change in the current. - Practical inductors: equivalent circuit: ![](https://i.imgur.com/O2lF9vR.png =200x) - Series inductors: $$L_T = L_1 + ... + L_n$$ - Parallel inductors: $$L_T = \frac{1}{\frac{1}{L_1} + ... + \frac{1}{L_n}}$$ - RL Circuits: - ![](https://i.imgur.com/COSeXT2.png =200x) - The current has the same shape as $V_R$. - Time Constant: $$\tau = \frac{L}{R}$$ - $$i = i_L = I_F + (I_i - I_F)e^{-\frac{t}{L/R}}$$ - Inductive Reactance: $$X_L = 2\pi f L,\ Z_L = j \omega L = j2\pi f L$$ - Voltage and current are always $90^\circ$ out of phase - ![](https://i.imgur.com/hlLlzD1.png =300x) - Power in an inductor: - True Power: - $$P_{true} = I_{rms}^2 R_W$$ - Reactive Power ($VAR$: Voltage-Ampere Reactive): - $$P_r = V_{rms} I_{rms}$$ - Quality Factor of a coil: - $$Q = \frac{I^2 X_L}{I^2 R_W}$$ ## Ch.12 ### Series RL circuits - Impedance: - ![](https://i.imgur.com/XakWcpW.png =400x) - ![](https://i.imgur.com/m3XYy3j.png =150x) - $$Z = \sqrt{R^2 + X_L^2},\ \theta = \tan^{-1}{\left(\frac{X_L}{R}\right)}$$ - Ohm's Law: - $$V = IZ$$ - ![](https://i.imgur.com/X1T8eCR.png =150x)![](https://i.imgur.com/VueViCo.png =200x) - ![](https://i.imgur.com/FacpQJJ.png =450x) - Variation of phase angle with frequency: - ![](https://i.imgur.com/na04vwx.png =200x) - Power factor: - $$PF = \cos{\theta}$$ - ![](https://i.imgur.com/MysG0lW.png =200x) - Apparent power consists of two components; a true power component, that does the work, and a reactive power component, that is simply power shuttled back and forth between source and load. - High-Pass Filter: - ![](https://i.imgur.com/VRWH2Q5.png =550x) - $$V_{out} = \frac{Z}{R + Z}V_{in} \Rightarrow V_{out} = \frac{j\omega L}{R + j\omega L} V_{in} \Rightarrow |V_{out}| = \frac{2\pi fL/R}{\sqrt{(2\pi fL/R)^2 + 1}} |V_{in}|$$ - Cutoff Frequency (3dB or half-power frequency): - $$\frac{2\pi fL/R}{\sqrt{(2\pi fL/R)^2 + 1}} = \frac{1}{\sqrt{2}} \Rightarrow f_C = \frac{1}{2\pi L/R}$$ - Low-Pass Filter: - ![](https://i.imgur.com/FbGkSGr.png =550x) - $$V_{out} = \frac{R}{R + Z}V_{in} \Rightarrow V_{out} = \frac{R}{R + j\omega L} V_{in} \Rightarrow |V_{out}| = \frac{1}{\sqrt{(2\pi fL/R)^2 + 1}} |V_{in}|$$ - Cutoff Frequency (3dB or half-power frequency): - $$\frac{1}{\sqrt{(2\pi fL/R)^2 + 1}} = \frac{1}{\sqrt{2}} \Rightarrow f_C = \frac{1}{2\pi L/R}$$ ### Parallel RL circuits - Conductance: $G$ Inductive Susceptance: $B_L$ Admittance: $Y$ $$G = \frac{1}{R},\ B_L = \frac{1}{X_L},\ Y = \frac{1}{Z}$$ - ![](https://i.imgur.com/yDJTPun.png =150x) $$Y = \sqrt{G^2 + B_L^2},\ \theta = \tan^{-1}{\left(\frac{B_L}{G}\right)}$$ - Ohm's Law: - $$V = IZ = \frac{I}{Y}$$ - ![](https://i.imgur.com/5NQ5LbK.png =250x) ## Ch.13 - Impedance: - $$Z_R = \frac{v}{i} = R,\ Z_C = \frac{v}{i} = \frac{1}{j\omega C},\ Z_L = \frac{v}{i} = j\omega L,\ (j^{-1}= -j)$$ ### Series RLC circuits - Impedance: - ![](https://i.imgur.com/QoL9KTN.png =250x)![](https://i.imgur.com/BqYUPot.png =100x) - ![](https://i.imgur.com/6P1W2w4.png =300x)![](https://i.imgur.com/KqfAfnk.png =270x) - $$X_{tot} = |X_L - X_C|,\ Z_{tot} = \sqrt{R^2 + X_{tot}^2},\ \theta = \tan^{-1}{\left(\frac{X_{tot}}{R}\right)}$$ - $$Z = R + j(\omega L - 1/\omega C)$$ - Voltages & Series resonance:: - ![](https://i.imgur.com/X04k3Dr.png =300x)![](https://i.imgur.com/UiTH1xg.png =350x) - ![](https://i.imgur.com/8EU8MfO.png) - ![](https://i.imgur.com/5jS3uYs.png =x132)![](https://i.imgur.com/DqwZqAy.png =x132) - $$V_R = \frac{R}{R + 1/j\omega C + j\omega L}V_{in},\ V_C = \frac{1/j\omega C}{R + 1/j\omega C + j\omega L}V_{in},\ V_L = \frac{j\omega L}{R + 1/j\omega C + j\omega L}V_{in}$$ - $$V_{CL} = V_C + V_L = \frac{1/j\omega C + j\omega L}{R + 1/j\omega C + j\omega L}V_{in} = \frac{j(\omega L - 1/\omega C)}{R + j(\omega L - 1/\omega C)}V_{in}$$ - $$X_C = X_L \Leftrightarrow f_r = \frac{1}{2\pi\sqrt{LC}}$$ - Decibels & -3 dB frequency: - $$dB = 10\log{\left(\frac{P_{out}}{P_{in}}\right)},\ dB = 20\log{\left(\frac{V_{out}}{V_{in}}\right)},\ (P \propto V^2)$$ - $$dB = 10\log{\left(\frac{1}{2}\right)} = 20\log{\left(\frac{1}{\sqrt{2}}\right)} =-3\ dB$$ - Band-pass filter: - ![](https://i.imgur.com/Oblieof.png =300x)![](https://i.imgur.com/sCkxE60.png =250x) - $$\left|\frac{V_{out}}{V_{in}}\right| = \left|\frac{R}{R + j(\omega L - 1/\omega C)}\right| = \frac{R}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{1}{\sqrt{2}}$$ - $$LC\omega^2 \pm RC\omega - 1 = 0,\ f = \frac{\pm RC + \sqrt{R^2C^2 + 4LC}}{4\pi LC},\ BW = \frac{R}{2\pi L}$$ - Selectivity & Q factor: - $$Q = \frac{f_r}{BW} = \sqrt{\frac{L}{R^2C}},\ BW = \frac{f_r}{Q}$$ - Band-stop filter: - ![](https://i.imgur.com/Is6l4xG.png =300x)![](https://i.imgur.com/eJbZ98v.png =250x) - $$\left|\frac{V_{out}}{V_{in}}\right| = \left|\frac{j(\omega L - 1/\omega C)}{R + j(\omega L - 1/\omega C)}\right| = \frac{\omega L - 1/\omega C}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{1}{\sqrt{2}}$$ - $$LC\omega^2 \pm RC\omega - 1 = 0,\ f = \frac{\pm RC + \sqrt{R^2C^2 + 4LC}}{4\pi LC},\ BW = \frac{R}{2\pi L}$$ ### Parallel RCL circuits - Conductance: $G$ Susceptance: $B$ Admittance: $Y$ $$G = \frac{1}{R},\ B = \frac{1}{X},\ Y = \frac{1}{Z}$$ - ==TODO== - Band-pass filter: - ![](https://i.imgur.com/7L0pS7J.png =300x)![](https://i.imgur.com/Jwgolo4.png =250x) - $$\left|\frac{V_{out}}{V_{in}}\right| = \left|\frac{-j(1/(\omega L - 1/\omega C))}{R - j(1/(\omega L - 1/\omega C))}\right| = \frac{\omega L / (1 - \omega^2LC)}{\sqrt{R^2 + (\omega L / (1 - \omega^2LC))^2}} = \frac{1}{\sqrt{2}}$$ - Band-stop filter: - ![](https://i.imgur.com/5mjj3l7.png =300x)![](https://i.imgur.com/ZiOnNYe.png =250x) - $$\left|\frac{V_{out}}{V_{in}}\right| = \left|\frac{R}{R - j(1/(\omega L - 1/\omega C))}\right| = \frac{R}{\sqrt{R^2 + (\omega L / (1 - \omega^2LC))^2}} = \frac{1}{\sqrt{2}}$$ ## Ch.14 - Mutual inductance: - $k$: the coefficient of coupling (dimensionless) - $$L_M = k\sqrt{L_1 L_2}$$ - Turns ratio: - ![](https://i.imgur.com/nWqi4P6.png =400x) - $N_{pri}$: number of primary windings $N_{sec}$: number of secondary windings $$n = \frac{N_{sec}}{N_{pri}}$$ - Step-up transformer: $n > 1$ Step-down transformer: $n < 1$ Isolation transformer: $n = 1$ - $$n = \frac{I_{pri}}{I_{sec}},\ P_{pri} = P_{sec},\ V_{pri}I_{pri} = V_{sec}I_{sec},\ \frac{V_{sec}}{V_{pri}} = \frac{I_{pri}}{I_{sec}}$$ - Reflected resistance: $$R_{pri} = \frac{V_{pri}}{I_{pri}},\ R_L = \frac{V_{sec}}{I_{sec}},\ \frac{R_{pri}}{R_L} = (\frac{V_{pri}}{V_{sec}})(\frac{I_{sec}}{I_{pri}}) = (\frac{1}{n})(\frac{1}{n}) = \frac{1}{n^2} \Rightarrow R_{pri} = (\frac{1}{n})^2 R_L$$ - Transformer efficiency: - $$\eta = \left(\frac{P_{out}}{P_{in}}\right)100\%$$ ## Ch.16 - The pn-junction diode: ![](https://i.imgur.com/6bpEXMc.png =350x)![](https://i.imgur.com/XYYiNae.png =300x) - Diode characteristics: - Forward bias, Reverse bias, Breakdown: ![](https://i.imgur.com/VJOcfZf.png =300x) - For a silicon diode: $$V_B \approx 0.7$$ - Diode models: ![](https://i.imgur.com/Pl0MHGn.png =300x) - Ideal model (🔵): either an open or close switch - Practical model (🔴): + the barrier voltage in the approximation - Complete model (🟢): + the forward resistance of the diode - Half-wave Rectifier: ![](https://i.imgur.com/oc0vit3.png =600x) - Full-wave Rectifier: ![](https://i.imgur.com/isuutXK.png =550x) ![](https://i.imgur.com/1PBKjwx.png =550x) - Bridge Rectifier: ![](https://i.imgur.com/bIdJWCn.png =550x) - Peak inverse voltage (PIV): - Diodes must be able to withstand a reverse voltage when they are reverse biased. This is called the peak inverse voltage (PIV). ## Ch.17 - Bipolar junction transistors (BJTs): ![](https://i.imgur.com/q7MOqf4.png =330x)![](https://i.imgur.com/pegyxOt.png =330x) - BJT bias: ![](https://i.imgur.com/imDN5zA.png) - BJT currents: - $$I_E = I_C + I_B$$ - $$I_C = \alpha_{DC} I_E,\ I_C = \beta_{DC} I_B,\ \alpha_{DC} \rightarrow 1$$ - Voltage-divider bias: - ![](https://i.imgur.com/I4Z0rQq.png =300x)![](https://i.imgur.com/Y5RS7YO.png =150x) - $$V_B \approx \left(\frac{R_2}{R_1 + R_2}\right) V_{CC}$$ - $$V_E = V_B - V_{BE} \approx V_B - 0.7$$ - $$I_E = \frac{V_E}{R_E},\ I_C = \left(\frac{\beta_{DC}}{\beta_{DC} + 1}\right) I_E$$ - $$V_C = V_{CC} - I_C R_C$$ - Collector characteristic curves: ![](https://i.imgur.com/XmMAAvw.png) - Saturation region (left) - Active region (middle) - Breakdown region (right) - Cutoff region (bottom) - Load lines: - ![](https://i.imgur.com/ZcM8wjc.png =250x)![](https://i.imgur.com/FvI9wHR.png =250x) - ![](https://i.imgur.com/0i1A7XD.png =250x)![](https://i.imgur.com/9GioLtK.png =250x) - CE amplifier: - ![](https://i.imgur.com/1jRrPsz.png =450x) - ![](https://i.imgur.com/gdWXrn5.png =550x) - $$I_B << I_E,\ R_{in(tot)} = R_1 \mid\mid R_2 \mid\mid \beta_{ac} r_e$$ - CC amplifier: - ![](https://i.imgur.com/ree6DdM.png =350x) - $$R_{in(tot)} = R_1 \mid\mid R_2 \mid\mid \beta_{ac} (r_e + R_E)$$ - Class B amplifier: - ![](https://i.imgur.com/tzC9OmF.png =300x) - ![](https://i.imgur.com/9LwUjrF.png =450x) - BJT as a switch (NOT gate): - ![](https://i.imgur.com/pm4yycp.png =550x) - $$I_B > \frac{I_{C(sat)}}{\beta_{DC}}$$ ## Ch.18 - Op-amp (Operation amplifier): - ![](https://i.imgur.com/mmV4wt9.png =500x) - Ideal & practical op-amp - ![](https://i.imgur.com/y12Khnh.png =280x)![](https://i.imgur.com/TCcz9Pj.png =350x) - ![](https://i.imgur.com/WvGEucZ.png) - Differential amplifier: - Single-ended mode: Only one signal applied. - Common mode: Two signals in phase applied. - Differential mode: Two signals out of phase applied. - Common-Mode Rejection Ratio: $$CMRR = \frac{A_{v(d)}}{A_{cm}},\ CMRR = 20\log{\left(\frac{A_{v(d)}}{A_{cm}}\right)}$$ - Negative Feedback Network (closed-loop): - Non-inverting amplifier: - ![](https://i.imgur.com/JvzTw0t.png =300x) - $$V_{in} \approx V_f,\ $$ - $$V_{out} = A_{cl(NI)} V_{in},\ A_{cl(NI)} = \frac{R_i + R_f}{R_i} = 1 + \frac{R_f}{R_i}$$ - $$Z_{in(NI)} = (1 + A_{ol} B) Z_{in},\ Z_{out(NI)} = \frac{Z_{out}}{1 + A_{ol} B},\ B = \frac{1}{A_{cl(NI)}}$$ - Inverting amplifier: - ![](https://i.imgur.com/m2xNoMU.png =300x) - $$V_{out} = A_{cl(I)} V_{in},\ A_{cl(I)} = -\frac{R_f}{R_i}$$ - $$Z_{in(I)} = R_i,\ Z_{out(I)} = \frac{Z_{out}}{1 + A_{ol} B},\ B = \frac{1}{A_{cl(I)}}$$ - Voltage-follower: - ![](https://i.imgur.com/U2wekad.png) - $$V_{out} = A_{cl} V_{in},\ A_{cl} = 1$$ ## Ch.19 ### Applications of amplifiers - Comparators ![](https://i.imgur.com/6T1gncE.png =300x) $$\left\{\begin{array}{l} V_{out(max)},\ V_{+} - V_{-} > 0 \\ -V_{out(max)},\ \text{otherwise} \end{array}\right.$$ - Summing amplifier: ![](https://i.imgur.com/ZQk9kWx.png =300x) $$V_{out} = -R_f\sum^{n}_{i=1}{\left(\frac{V_{in(i)}}{R_i}\right)}$$ - Averaging amplifier: ![](https://i.imgur.com/pDOYYzB.png =300x) $$nR_f = R_{in},\ V_{out} = -\frac{R_f}{R_{in}}\sum^{n}_{i=1}{V_{in(i)}} = -\frac{1}{n}\sum^{n}_{i=1}{V_{in(i)}}$$ - Scaling adder: ![](https://i.imgur.com/BZC9uSn.png =300x) $$V_{out} = -\sum^{n}_{i=1}{\left(\frac{R_f}{R_i}\right)V_{in(i)}}$$ - Integrators: ![](https://i.imgur.com/nb3X5EO.png =200x) $$R_f >> R,\ \frac{\Delta V_{out}}{\Delta t} = -\frac{V_{in}}{R_i C}$$ - Differentiators: ![](https://i.imgur.com/bnPdhNG.png =200x) $$R_f >> R,\ V_{out} = -\left(\frac{\Delta V_C}{\Delta t}\right)R_f C$$