# Complex analysis notes
## Plan
* (Pluri)subharmonic functions
* Regularisation of qpsh
* First-order differential operators
* Review of Kaehler geometry
* The Ohsawa-Takegoshi extension theorem
* Review of blowups and valuations
* Multiplier ideal sheaves
## (Pluri)subharmonic functions
We follow [DeAG]. $\Omega\subset \mathbb R^d$
* Green-Riesz representation theorem: Let $\Delta$ be the usual neg definite Laplacian $\mathbb R^d$.
* Green kernel, Poisson kernel and Newton kernel satisfies: $$u(x) = \int_\Omega G_\Omega(x,y)\Delta(y)+\int_{\partial\Omega}P_\Omega(x,y)u(y)d\sigma(y)$$
and $G_\Omega(x,y)\equiv N_d(x-y) \mod \mathcal C^\infty$.
* Defn: $u\colon\Omega\to \mathbb R\cup\{-\infty\}$ is **sh** if it is usc, not identically $-\infty$, and for each ball $\bar B(a,r)\subset \Omega$, we have 'mean value' ineq
$$u(a)\le \strokedint_{S(a,r)}u$$
* Example: This is also some sort of Laplacian...: [FIGURE: [ラプラス](https://www.youtube.com/channel/UCENwRMx5Yh42zWpzURebzTw)]
## Refs
* [Be] B. Berndtsson. An introduction to things $\overline \partial$
* [Br] Haïm Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations
* [DeAG] J.-P. Demailly. Complex analytic and differential geometry
* [De2] J.-P. Demailly. Analytic methods in algebraic geometry,<!-- * [EG92] L. Evans, R. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992 -->
* [Ei] D. Eisenbud. Commutative algebra.
* [GH] Griffiths-Harris.
* [GR] Gunning-Rossi
* [Ha] Hartshorne.
* [La] R. Lazarsfeld. Positivity
* [Stacks] Stacks Project. http://stacks.math.columbia.edu,
* [Vo] Voisin