# Phase 1 of BLOS Improvement Project - Data Collection and Labeling ###### tags: `log` [TOC] ## Dataset Collection Todo: - [ ] Finish Get Image Code - [ ] Choose Routes - [ ] Collect Data - [ ] Upload Dataset to Roboflow ### Google Street View API We use a [module from GitHub](https://github.com/hhe1ibeb/streetview) which saved us a lot of time ### Determine the Roads to Collect Data From 考慮條件: * **無**自行車道的大馬路 ![](https://i.imgur.com/GX99owS.jpg) 台北市自行車道分佈圖 結論:由圖觀察,文山區的自行車道最少 影響自行車安全性的因素 * 斑馬線 * 分隔島 / 停車格 ## Training the Model Todo: - [ ] Read Papers - [ ] Compare Models - [ ] Label Data - [ ] Train ### Model Comparison [some ref i haven't read yet](https://medium.com/ching-i/影像分割-image-segmentation-語義分割-semantic-segmentation-1-53a1dde9ed92) about difference between image segmentation and semantic segmentation [Efficient Deep Models for Monocular Road Segmentation](http://ais.informatik.uni-freiburg.de/publications/papers/oliveira16iros.pdf?ref=https://githubhelp.com) ### Method Comparison ### Paper * [Ridesharing accessibility from the human eye: Spatial modeling of built environment with street-level images-2022](https://reader.elsevier.com/reader/sd/pii/S0198971522001028?token=E1BEDFEC0AD7A12808FE52CCA157D5F40DD9F2524FF18D1B140B2D48C9B7ED45EC9A5A56370DA6FF41948992C1547577&originRegion=us-east-1&originCreation=20230409131644) * [Development of a bikeability assessment tool for Dutch cities-2022](https://pure.tue.nl/ws/portalfiles/portal/201242204/Wout_0964113_USRE_Vries_d.pdf) * [Assessing bikeability with street view imagery and computer vision-2021](https://arxiv.org/pdf/2105.08499.pdf) Use SVI to extract information of data used in previous bikeability studies under four categories that have been delineated by this study: * environment 環境 ![](https://i.imgur.com/wlW0otz.png) * slope * urban greenery * land use * building design * connectivity ![](https://i.imgur.com/8vQdEOo.png) * infrastructure 基礎設施 * sidewalk * pavement * path obstruction * curb cuts * crossing * sidewalk buffer * street amenity * bikelane * road width ![](https://i.imgur.com/yUFUych.png) [The development and testing of an audit for the pedestrian environment](https://d1wqtxts1xzle7.cloudfront.net/46806200/The_development_and_testing_of_an_audit_20160626-23259-i8vcvj-libre.pdf?1466956134=&response-content-disposition=inline%3B+filename%3DThe_development_and_testing_of_an_audit.pdf&Expires=1681435179&Signature=BamHocO~Lrbk3nabY~W~QKTNJZrWmA3eph2tPbpfkYdq340j3SboGT5JEryNP50TAqlVCiXIfiXKsEqYNEHV5kFmwGJ5OUWzmu8sKiCRAC~vwZS-muckxkiZCXjGLxxAyibt6a7fadB~rhLmFGYlqlkQ79feWZoMHGopY9ma5sdIbTXqw8hWv6F~ptPaTb5KnQL5xb7uhfdf6uAhz8l1OvlkL1j0CbGxq6hDui~08YrcqRAhDNyTESxh6lH2N9kAA0KbGopg7NBuaNAYvnxqeV9p2FMyFvLxaFKjm6x9Mo-ZMuDoPN9yJk0sU897FDPFCN4mmtGmK~45MXCB5w89jw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA) * vehicle-cyclist interaction ⾞輛與騎⾞⼈互動 * dynamic traffic volume * [Estimating pedestrian volume using Street View images: A large-scale validation test-2020](https://) * SVI can be used to explain more than 65 percent of the spatiotemporal mobility pattern * [Knowledge and topology: A two layer spatially dependent graph neural networks to identify urban functions with time-series street view image-2023](https://www.sciencedirect.com/science/article/abs/pii/S0924271623000680) * traffic speed * street parking * traffic control ![](https://i.imgur.com/iralhqx.png) * perception 感知 * attractive * safety * cleanliness * crowdedness * beauty ![](https://i.imgur.com/y5mwcyK.png) ![](https://i.imgur.com/3lbu5Rk.png) ![](https://i.imgur.com/RrIIOFa.png) ##### Future directions listed: 1. Incorporate predictive modelling to estimate AQI for each sample point 2. Survey participants control 3. Developing GUI software and API * [Knowledge and topology: A two layer spatially dependent graph neural networks to identify urban functions with time-series street view image-2023](https://www.sciencedirect.com/science/article/abs/pii/S0924271623000680) * [Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature](https://www.researchgate.net/publication/340488257_Expanding_the_Scope_of_the_Bicycle_Level-of-Service_Concept_A_Review_of_the_Literature) * [Development of Artificial Intelligence-based Bicycle Level of Service Models for Urban Street Segments](https://link.springer.com/article/10.1007/s13177-021-00280-3) * [Development of a bicycle level of service model for urban street segments in mid-sized cities carrying heterogeneous traffic: A functional networks approach](https://www.sciencedirect.com/science/article/pii/S209575641630294X) * [Defining Bicycle Levels of Service Criteria Using Levenberg–Marquardt and Self-organizing Map Algorithms](https://www.researchgate.net/publication/327008801_Defining_Bicycle_Levels_of_Service_Criteria_Using_Levenberg-Marquardt_and_Self-organizing_Map_Algorithms) * [Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature](https://www.researchgate.net/publication/340488257_Expanding_the_Scope_of_the_Bicycle_Level-of-Service_Concept_A_Review_of_the_Literature) * [Bicycle Level of Service for Route Choice—A GIS Evaluation of Four Existing Indicators with Empirical Data](https://www.researchgate.net/publication/333000021_Bicycle_Level_of_Service_for_Route_Choice-A_GIS_Evaluation_of_Four_Existing_Indicators_with_Empirical_Data) #### 評估指數 1. ⾃⾏⾞安全指數評級(BSIR) 2. 道路路段指數(RSI):考量路段各種參數:交通量、車道數、限速、外側車道寬度、路面因素、位置因素 3. 交叉⼝評價指數(IEI)模型:考慮交叉⼝參數來評估道路交叉⼝的性能 4. Bicycle Suitability Rating (BSR)模型也是基於RSI模型的概念背景開發的 5. 交互⾵險評分(IHS) * 路邊⼟地利⽤強度 * 路緣切割頻率 #### SAM by Meta [Segment Anything](https://ai.facebook.com/research/publications/segment-anything/) [GitHub](https://github.com/facebookresearch/segment-anything) ## Datasets * [Cityscapes](https://www.cityscapes-dataset.com) * [Mapillary Vistas](https://www.mapillary.com/dataset/vistas) * [Place Pulse 2.0](https://paperswithcode.com/dataset/place-pulse-2-0)