# RAG - Retrieval-Augmented Generation ## 架構 ### 檢索器 從外部知識庫檢索訊息 Embedding Vector Database RAG + Sentence Transformer [Sentence Transformer](https://axk51013.medium.com/%E5%BF%AB%E9%80%9F%E4%BD%BF%E7%94%A8%E8%B6%85%E5%BC%B7nlp-model-bert-db9c2a331b0f) ### 生成器 生成回應 ## 運作 ### Create External Data * API, Databases, document repositories * Embedding language models: creates a knowledge library that the generative AI models can understand ### Retrieve Relevant Information * Convert query to vector and match with vector databases ### Augment the LLM Prompt * Augments the user input (prompts) by adding the relevant retrived data in context * Allows the LLM to generate an accurate answer to user queries [Setting up a Private Retrieval Augmented Generation (RAG) System with Local Llama 2 model and Vector Database ](https://medium.com/unstructured-io/setting-up-a-private-retrieval-augmented-generation-rag-system-with-local-vector-database-d42f34692ca7) ![image](https://hackmd.io/_uploads/rJP-T97JC.png) ![image](https://hackmd.io/_uploads/SJenn5Q1R.png) ![image](https://hackmd.io/_uploads/Bk0bkqXeR.png) https://learnbybuilding.ai/tutorials/rag-from-scratch