# multiple regression 參照: http://www.adart.myzen.co.uk/reporting-multiple-regressions-in-apa-format-part-one/ seven main assumptions 1. outliers 2. collinearity 3. independent errors 4. random normal distribution of errors 5. homoscedasticity 6. linearity of data 7. non-zero variances ## Collinearity **是指多變量線性回歸中,變量之間由於存在高度相關關係而使回歸估計不准確。在該情況下,多元回歸的係數可能會因為模型或數據的微小變化發生劇烈改變。** greater than 10, or the Tolerance is less than 0.1, then you have concerns over multicollinearity. ## Independent Errors **Xi = mi + ei** **where the ei are independently distributed and mi represent the averages at each point in time.** Durbin-Watson values can be anywhere between 0 and 4. Durbin-Watson value is **less than 1 or over 3** then it is counted as being significantly different from 2, and thus the assumption has not been met. ## Homoscedasticity and Linearity **Homoscedasticity: 異質變異數,又稱分散不均一性,指的是一系列的隨機變數間的變異數不相同** **Heteroscedasticity: 異方差,又稱分散不均一性,指的是一系列的隨機變量間的方差不相同,相對於同質方差(Homoscedasticity)** ![](https://i.imgur.com/DPSYeJT.png) 聲音空間(含大小跟其他)距離感知、認知 3年 60人 數據混合