# Student-t asymptotics The Student-t distribution pdf is: $$ p(x) = \frac{\Gamma({0.5(v + 1))}}{\sqrt{v\pi}\Gamma(0.5v)}(1 + \frac{x^2}{v})^{-\frac{v + 1}{2}} \propto (1 + \frac{x^2}{v})^{-\frac{v + 1}{2}}. $$ So taking $v = \frac{1}{\lambda}$, asymptotically for large $x$, we have $$\begin{align} p(x) &\approx ... + x^{-v-1} = ... + x^{-\frac{1}{\lambda}-1}. \end{align}$$ Considering the derivative of our "tail transformation" from uniform base, the derivative of the inverse transformation is: $$\frac{\partial T^{-1}}{\partial x}(x) = (1 + \lambda x)^{-\frac{1}{\lambda} - 1},$$ We see that our constructed density $q(x)$ has the same asymptotics, $$\begin{align} q_x(x) &= q_u(T^{-1}(x))\frac{\partial T^{-1}}{\partial x}(x) \\ &= (1 + \lambda x)^{-\frac{1}{\lambda} - 1} \\ &\approx ... + x^{-\frac{1}{\lambda} - 1} \end{align}$$ Does this mean that the Student-T can have any tail behaviour?