# Install Tensorflow-gpu on Windows https://www.tensorflow.org/install/pip?hl=zh-tw tensorflow version link at bottom ### 1. install nvidia driver ### 2. install cuda tool kit ### 3. install CUDNN https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-windows ### version check https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html ![image](https://hackmd.io/_uploads/r1b7rSWVp.png) ### 4. install conda or virtualenv ## Example python\==3.8 cuda\==11.8 https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local cudnn\==8.9.x for cuda 11.x https://developer.nvidia.com/rdp/cudnn-download ```bash= # unzip downloaded file # move /include, /bin, lib to C:\Program Files\NVIDIA\CUDNN\v8.x # add C:\Program Files\NVIDIA\CUDNN\v8.x\bin to path ``` tensorflow-gpu\==2.6.0 ```bash= # install nvidia driver # install nvidia toolkit # install CUDNN conda create --name tensorflow-gpu python=3.8 conda activate tensorflow-gpu pip install https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp38-cp38-win_amd64.whl pip install protobuf==3.19.0 keras==2.6.0 tensorflow==2.6.0 # if necessary # pip uninstall anything not compatiable with tensorflow # pip install tensorflow again python >>> import tensorflow as tf >>> tf.test.is_gpu_available() # true ```