# MLSS-2021 Taipei Collaborative Notes :::success Welcome to MLSS-2021 Taipei! ::: :::info * Visit the official website for more information [MLSS-2021 Taipei](http://ai.ntu.edu.tw/mlss2021/). * This is a page to enter all the collaborative notes. * If you have contributed to the notes, you can write down your name after "*Author:*". We may make the collaborative notes public in the further. ::: --- ### Week 1 #### 8/2 * [[Lecture] Large scale learning and planning in reinforcement learning](/@MLSS-2021/rktriVTCu) * [[Industrial Talk] Google Efforts on AI Research and Talent Development](https://hackmd.io/@MLSS-2021/HydLGy4kY) * [[Lecture] Cost-sensitive Classification: Techniques and Stories](/@MLSS-2021/SJ7b24pRd) #### 8/3 * [[Lecture] Theory of deep learning](/@MLSS-2021/rkDmQBTCd) * [[Industrial Talk] Machine Learning as a Services: Challenges and Opportunities](https://hackmd.io/@MLSS-2021/Sy4sfkV1t) * [[Lecture] Probability Divergences and Generative Models](/@MLSS-2021/r1ko7SaRd) #### 8/4 * [[Lecture] Neuro-symbolic systems and the history of AI](/@MLSS-2021/BJnmSra0d) * [[Lecture] Fundamentals and Applications of Deep Reinforcement Learning](/@MLSS-2021/By1_Sr60d) * [[Industrial Talk] Transform the Beauty Industry through AI + AR: Perfect Corp’s Innovative Vision into the Digital Era](https://hackmd.io/@MLSS-2021/HJoafJ4kK) * [[Lecture] Optimal transport](/@MLSS-2021/B1s9BSaRO) #### 8/5 * [[Lecture] Bias and Fairness in NLP](https://hackmd.io/@MLSS-2021/BJmMm1EyF) * [[Industrial Talk] Developing a World-Class AI Facial Recognition Solution – CyberLink FaceMe®](https://hackmd.io/@MLSS-2021/S1XU7yN1K) * [[Lecture] Neural Architecture Search and AutoML](https://hackmd.io/@MLSS-2021/SyIsXAOyY) #### 8/6 * [[Lecture] Holistic Adversarial Robustness for Deep Learning](/@MLSS-2021/ByO3HrTA_) * [[Industrial Talk] Advantech, Compal Electronics, TAIWAN SHIN KONG SECURITY, Vizuro Taiwan](https://hackmd.io/@MLSS-2021/Hy5gQJ4kF) * [[Poster] Session 1](https://hackmd.io/@MLSS-2021/SJhPQJNyY) ### Week 2 #### 8/9 * [[Lecture] An introduction to Statistical Learning Theory and PAC-Bayes Analysis](/@MLSS-2021/BkvRSHpAd) #### 8/10 * [[Lecture] Pre-training for Natural Language Processing](/@MLSS-2021/HJfQUB6Ru) * [[Lecture] Deep Learning for Speech Processing](/@MLSS-2021/r1GBIrTA_) #### 8/11 * [[Lecture] Computer Vision](/@MLSS-2021/H1VvISp0d) * [[Lecture] TinyML and Efficient Deep Learning](/@MLSS-2021/rJRdIrTRO) #### 8/12 * [[Poster] Session 2](https://hackmd.io/@MLSS-2021/HJOYXk4kY) * [[Lecture] Meta Learning for Human Language Processing](/@MLSS-2021/SJncISpCO) #### 8/13 * [[Lecture] Interpretable machine learning](/@MLSS-2021/Syv2LH6Cd) * [[Lecture] Overview of learning quantum states](/@MLSS-2021/B1WCIrTRd) ### Week 3 #### 8/16 * [[Lecture] ML privacy](/@MLSS-2021/SJ1xvBTR_) #### 8/17 * [[Poster] Session 3](https://hackmd.io/@MLSS-2021/rki57kEJY) * [[Lecture] Continual Visual Learning](/@MLSS-2021/SyTWwSpAO) #### 8/18 * [[Panel Discussion] Trustworthy Machine Learning: Challenges and Opportunities](https://hackmd.io/@MLSS-2021/rkeTmyNyF) * [[Poster] Session 4](https://hackmd.io/@MLSS-2021/Hy3jmJVyF) #### 8/19 * [[Lecture] Machine Learning for Dynamic Environment](/@MLSS-2021/Bk2mPBaCO) * [[Lecture] Geometric Deep Learning](/@MLSS-2021/BJyIPHaCu) #### 8/20 * [[Panel Discussion] Self-supervised learning for speech](https://hackmd.io/@MLSS-2021/ByzR7J4kK) ###### tags: `MLSS-2021`