# 2020-06-05 Chinese Postman & Ch3 (II) Matchings and Factors ###### tags: `圖論` [影片連結](https://www.youtube.com/watch?v=jmuG3wT7cBw&feature=youtu.be) ## P.2 Independence nnumber * $Def$ max size of independent set * **Not** always equal the size of a partite set ## P.3 (<font color=#ff0000>符號重要</font>) * $Notation$ $\alpha(G)$ : max independent set size(點的子集) $\alpha'(G)$ : max matching size(邊的子集) $\beta(G)$ : min vertex cover size(點的子集) $\beta'(G)$ : min edge cover size(邊的子集) >[name=Omnom][color=#00a000] >$\alpha$看的是max >$\beta$看的是min cover > >有「$'$」的是邊的子集 >否則為點的子集 * $Lemma ~ 3.1.21$: $S \subseteq V(G)$ is independennt set $\Leftrightarrow \bar S$ is vertex cover, and hence $\alpha(G)+\beta(G)=n(G)$ $pf$ :::info <font color=#000000> $S$ is an independent set ⇒ every edge is incident to at least vertex of $\bar S$ . $\bar S$ cover all edges ⇒ no edges joining vertices of $S$. Thus, every maximum independent set is the complement of a minimum vertex cover. </font> ::: ## P.4~8 $Theorem ~ 3.1.22$: * If $G$ is a graph **without isolated vertices**, then $\alpha'(G)+\beta'(G)=n(G)$ * 思路: ![](https://i.imgur.com/uYgGMdV.png) ![](https://i.imgur.com/yUQtaSg.png) ![](https://i.imgur.com/YWyhQlJ.png) ![](https://i.imgur.com/RM7l3uH.png) ![](https://i.imgur.com/UxHPV0V.png) ![](https://i.imgur.com/sjiNYMV.png) ![](https://i.imgur.com/z9uCSQ7.png) ![](https://i.imgur.com/nz0szYL.png) $pf$ :::info <font color=#000000> 1. <font color=#df0000>$\alpha'(G)+\beta'(G) \leq n(G)$</font> $M$: maximum matching 給定一個maximum matching $M$,讓edge cover = $n(G)-|M|$。edge cover = $n(G)-2|M|+|M|$的意思是當edge cover選到有matching的edge時,就會選到$|M|$個,剩下的vertex數量就會是$n(G)-2|M|$個,因為當選到有matching的edge時,就會解決掉2個vertex,剩下沒被挑到的點所選到的edge都會和M的其中一點是有相連的,所以要再加回$|M|$。透過maximum matching所造出來的edge cover = $n(G)-|M|$,這裡不能保證edge cover是minimum,所以會得出$\beta'(G) \leq n(G)-\alpha'(G)$,會寫成小於等於是因為edge cover在挑的時候一定會至少是minimum edge cover。 ~~>[name=Omnom][color=#00a000]"vertex cover"是不是應該改成edge cover?~~ >[name=Conan][color=#0000ff]已更改 2. <font color=#df0000>$\alpha'(G)+\beta'(G) \geq n(G)$</font> 給定一個minimum edge cover $L$,讓matching size = $n(G)-|L|$。 $L$: minimum edge cover $|L|=\beta'(G)$ 考慮$k$個disconnected star構成$L$ 則$|L|=n(G)-k$ (不算中心,算star的端點數) matching size為$k$ (一個star只能找一邊matching) $\Rightarrow n(G)-|L| = n(G)-\beta'(G) = k \leq \alpha'(G)$(找出來的matching必定小於等於maximum matching) $\Rightarrow \alpha'(G)+\beta'(G) \geq n(G)$ </font> ::: ## P.9 $Corollary$ $G$ is a bipartite graph with no isolated vertices, then $\alpha(G) = \beta'(G)$. $pf$ :::info <font color=#000000> By [<font color=#ff0000>$Lemma ~ 3.1.21$</font>](#P3-符號重要) & [<font color=#ff0000>$Theorem ~ 3.1.22$</font>](#P.4~8) $\alpha(G ) + \beta (G) =n(G)= \alpha'(G ) + \beta ' (G)$ By [<font color=#ff0000>$Theorem ~3.1.16$</font>](https://hackmd.io/1ggnrQdKQ-qg129pur--gg#P1920-絕對考-) bigraph: maximum matching = minimum vertex cover $\alpha'(G)=\beta(G)$ $\Rightarrow \alpha(G)=\beta'(G)$ </font> ::: ## P.10~11 Dominating Set dominating set 本身是點集合,支配的也是點,靠的是所有不在dominating set的點都會和他是neighbor ![](https://i.imgur.com/GqoSM4i.png) ## P.12~15 Augmenting Path Algorithm (Hopcroft-Karp) [影片連結1](https://www.youtube.com/watch?v=lM5eIpF0xjA) [影片連結2](https://www.youtube.com/watch?v=HTJjGw3HCBM) >[name=Omnom][color=#00a000]結果發現Hungarian algorithm好像也行 >matrix中,有連線就給0,其餘給1或$\infty$