# 2020-03-13 Intro. & Math Background ###### tags: `圖論` [TOC] {%youtube WtyiVHoixpk%} ### Set Definition * $$ S = \{ x\in A:condition(x) \} $$ * X is **proper subset** of A (X是A的subset,但不等於A) $$ X \subsetneq A $$ * **Partition** 定義: $$ A_i \cap A_j = \emptyset\ \ \forall i \neq j \ \ , \ \bigcup_i A_i =A$$ * **symetric difference** of A and B : **AΔB** * Note: A xor B $$ A \Delta B =(A \cup B) - (A \cap B) $$  * k-tuple $$ A^k = \{ (x_1,...,x_k): x_i \in A \} $$ $$When A=\{0,1\},A^k \ is \ the \ set \ of \ binary \ k-tuples. $$ ### Quantifiers & Proofs * **Universal** quantifier ∀ (For all ...) $$ (\forall x \in S) P(x) $$ * **Existential** quantifier ∃ (For some ...) $$(\exists x \in S) P(x)$$ * 英文對照參考  * **Negation** of quantified statements: - $$\neg[(\forall x \in S) P(x)] \ same \ as \ (\exists x \in S) (\neg P(x)) $$ - $$\neg[(\exists x \in S) P(x)] \ same \ as \ (\forall x \in S) (\neg P(x)) $$ * Note: Quantifier 的順序會影響語句 * ∀x ∃y P: 無論x是哪一種,都存在「相對應的y」,使P為真 * ∃y ∀x P: 存在一個y,使得「任何x」都能使P為真 * logical definition  * $$ P \Rightarrow Q \ is \ (\neg P) \lor Q$$ * Note: 真值表 | | P | ¬P | | :-----: |:--: |:--: | | **Q** | 1 | 1 | | **¬Q** | 0 | 1 | * **Sufficient V.S. Necessary** >[color=#ff0000] > >Sufficient: >如果給定句子的真偽,要讓 Q 的 value 可以被評估的話 >至少 P 要是 true >(P 是 true 時,「足以」近一步判斷 Q 值 與句子的真偽) > >Necessary: >如果知道 P 是 true,那麼 Q 必須是 true, >否則句子是 false > >[name=MathematiKai ] :+1: :100: :smile: :satisfied: :cry: :laughing: > * **Contrapositive**: 證明右邊成立,左邊自然而然也就成立 $$P \Rightarrow Q \ is \ \neg Q \Rightarrow \neg P$$ * **Contradiction**: $$ \text{ Assume }Q\text{ is false. When } P\text{ is true, }Contradiction \text{(false) occurs}$$ $$ P \Rightarrow \neg Q (\Rightarrow\! \Leftarrow), \text{ thus, } P \Rightarrow Q \text{ must be true.}$$ ### Induction  ### Function  * **Injective**: one-to-one * if x is different, then y is different * **Surjective**: onto * every y has at least 1 correspondent x * **Bijective**: one-to-one & onto * one-to-one correspondent ### Equivalence Relation  ### Pigeonhole Principle #### Lemma: **kn objects is partintioned into n classes, then some classes receive more than k objects**
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up