# 2020-04-17 Directed Graph, Trees & Distance I
###### tags: `圖論`
[video](https://www.youtube.com/watch?v=cNXxtyS2t_0&list=PL8xY3250v6CSrLIsKMFLyrCfWonR1STtt&index=5)
# Directed Graph(digraph)
## P.2,3 Definitions
* V(G)、E(G)、function assigning each edge an ordered pair of vertices
* An edge is from its *tail* to its *head*.
* $UV$ ($u$ is tail , $v$ is head)
NOTE: Head & Tail定義有不同版本
這本書箭頭端是Head
* Simple (不會有multiple edge, ~~最多一個loop~~)
>[color=#00a000]
>
>沒有loop吧?
>ans: 一個點自己連自己
>[name=Omnom]
## P.4 Definitions (Conti.)
* Path: 沿著箭頭的path 逆向的連接 不算是path
* Directed cycle: 沿著箭頭走可以走回到起點
* underlying graph: digraph把箭頭拿掉(no order,multiple edge 拿到剩一條edge)
## P.5 Definitions (Conti.)
* Adjacency matrix $A(G)$:
$A_{ij} = 1$ if $\exists$ edge from $v_i$ to $v_j$
* incidence matrix $M(G)$: (點邊關係)
+ $m_{i,j}=+1$ if $v_i$ is tail
+ $m_{i,j}=-1$ if $v_i$ is head

## P.6 Definitions (Conti.)
* **weakly connected**: underlying graph is connected
* **strongly connected**: $\forall$ordered pair of u,v of vertices, $\exists$ a path from u to v
+ 單點在這本書視為strong connected
* **strong components**: maximal strong subgraphs
## P.7 Definitions (Conti.)
* $d^+(v)$ outdegree
number of edges with tail $v$
* $d^-(v)$ indegree
number of edges with head $v$
* out-neighborhood, successor set $N^+ (v) := \{x ∈V (G) : v → x\}$
* in-neighborhood or predecessor set $N^− (v) := \{x ∈V (G) : x → v\}$
* minimum indregree: $\delta^-(G)$
* maximum indregree: $\Delta^-(G)$
* minimum outdregree: $\delta^+(G)$
* maximum outdregree: $\Delta^+(G)$
## P.8
一個head配一個tail,也等於edge的個數
## P.9 Definitions (Conti.) Eulerian
definition of Eulerian is the same on any king of graph
## P.10
$Lemma$:
If $G$ is a digraph with $\delta^-(G) ≥ 1$ or $\delta^+(G) ≥ 1$, then $G$ contains a cycle.
$proof:$
:::info
<font color=#000000 >
考慮out-degree
一條path,尾端的out-degree(箭頭)最後會指向path上其中一點,因此形成cycle
in-degree證明的部分,只要將方向顛倒即可
</font>
:::
## P.11 Definitions (Conti.) Orientation
>[color=#00a000]
>
>a.k.a. 每個邊加箭頭
>[name=Omnom]
* oriented graph: simple graph 加箭頭
* tournament: complete graph 加箭頭
## P.12 King
* $Def:$ vertex from which every vertex is reachable by a path of length at most two
(從king到任一點可以2步內走到)
* $Proposition:$ Every tournament has a king.
- 補充: 必須要是tournament(simple graph 是complete graph)才會有此性質,因為每個vertex都會和其他vertex有連線,只是說看是A指向B還是B指向A
* $proof:$
:::info
<font color=#000000>
依下面的例子來講,假設a不是king,代表說至少會有一個node(假設b)的outdegree會比a大,因為那個node就是指向a,而且a的outdegree所指向的node也都不會指向b,也就是說b的outdegree也同時會指向這些node,同理可以再繼續驗證b,直到最後找不到有node的outdegree比最後一個找的還大,那這最後一個node一定是king。
</font>
</br>
<font color=#000000>
如果某點不是king,那麼一定找得到outdegree更大的點$\Leftrightarrow$
</font>
</br>
<font color=#000000>
如果outdegree更大的點找不到,那麼某點一定是king$\Rightarrow$outdegree最大的點就是king
</font>
</br>
<font color=#000000>
e.g. a3才有可能不是king
</font>
```graphviz
digraph {
a1->b1
a1->c1
b1->c1
a2->c2
b2->a2
c2->b2
a3->c3
b3->a3
b3->c3
}
```
:::
# Trees & Distance I
## P.2 Definition
* spanning subgraph
>[color=#00a000]
>
>spanning的意涵就是**包含全部的vertex**
>A subgraph S of a graph G is a graph whose set of vertices and set of edges are all subsets of G. (Since every set is a subset of itself, every graph is a subgraph of itself.)
>[name=Omnom]
## P.3 Properties of Trees
$Lemma.$
形成tree至少要有2個點
刪完leaf(degree=1),它還是tree,只是變成n-1個點而已
## P.4,5,6,7,8 Properties of Trees (Cont.)
$Theorem.$
* 組成tree三大元素:{connected, acyclic, n-1 edges}
* The following statements are equivalent:
A. connected + no cycles
B. connected + n-1 edges
C. n-1 edges + no cycles
D. $\forall u,v \in V(G)$, $\exists!~u,v$-path
>[color=#00a000]
>
>附註:$\exists!$是「只存在一個」的意思
>
>我看A是可以直接等於D了www
>1. $\forall u,v \in V(G)$, $\exists$ $u,v$-path $\leftrightarrow$ connected
>2. $\exists$ only 1 $u,v$-path $\leftrightarrow$ no cycle
>
>[name=Omnom]
$proof.$
:::info
<font color=#000000>
$A \Rightarrow \{B,C\}$:
(connected+no cycle 可以得到 n-1 edge)
by $Strong ~ Induction$
$n=1$:明顯成立
Suppose $1<k<n$ 成立
for $k=n$,就是把node數是$n-1$時的點接回去(使用P.3 $lemma$),
(透過$lemma$知道可以刪除leaf,得到$n-1$ vertices數的tree,再透過$lemma$知道接回leaf時,只會增加一個edge)
</font>
:::
:::info
<font color=#000000>
$B\Rightarrow\{A,C\}$
(connected+ $n-1$ edges得到no cycle)
假設connected+ $n-1$ edges得到有cycle,現在把cycle上的edge拿掉並不破壞connected,但由上面$A \Rightarrow \{B,C\}$得知acylic connected graph會有$n-1$ edges,但是這裡的條件是$G$本身就有$n-1$ edges,把cycle上的edge拿掉還是$n-1$ edges($\rightarrow \leftarrow$),所以假設錯誤
$i.e.$ connected+ $n-1$ +cycle {$\Rightarrow$|remove edges} connected+ $n-k$ + no cycle $\Rightarrow\Leftarrow$ ($A \Rightarrow \{B,C\}$)
</font>
:::
:::info
<font color=#000000>
$C\Rightarrow\{A,B\}$
($n-1$ edges + no cycle得到connected)
假設no cycle+ $n-1$ edges得到有
no connected,假設現在有$k(k>1)$個component,每個vertex都只會出現在一個component,首先可以先讓每個component 符合 no cycle,也就是每個component都會有$n(G_i)-1$個edge,$k$個component共會有$n-k$個edge,由前面假設可得知G會有$n-1$個edge,i.e. $k=1$,與假設不符
</font>
[<font color=#ff0000>2020-03-27_P.20</font>](https://hackmd.io/Q7zr3d6mQVmRv2VtWxrtcQ#P20)
:::
::: info
<font color=#000000>
1. $A \Rightarrow D$
(connected+no cycle得到$\forall u,v \in V(G)$, $\exists ~exactly ~ one \ u,v$-path)
假設有2條路可以走,但是會有cylcle出現
($\neg D \Rightarrow \neg A$)
2. $D \Rightarrow A$
假設有cycle,那至少會有一組u,v會有2條路
($\neg A \Rightarrow \neg D$)
</font>
:::
## P.9 Properties of Trees (Cont.)
$Corollary.$
(a) every edge of a tree is cut-edge
(b) adding one edge to tree forms exctly one cycle
\(c\) every connected graph contains spanning tree
$proof$:(待補)
:::info
<font color=#000000>
(a)
tree has no cycle
by [<font color=#ff0000>2020-04-10 P.24</font>](https://hackmd.io/QIz8EtcKRqWANklnF4S-Fw#P24)
Q.E.D.
(b)
[<font color=#ff0000>A & D</font>](#P45678-Properties-of-Trees-Cont)
\(c\)
</font>
:::
## P.10
$Proposition$
sapnning trees $T,T' ⊆ G$
$G$: connected
$T ≠ T'$
given $e \in E(T)-E(T')$,
then $\exists e'\in E(T')-E(T)$
$s.t.~$ $T-e+e'$ is a spanning tree of $G$
補充解釋: $e$ 只要是 $T$ 和 $T'$ 2個spanning tree不重複的edge,就永遠可以找到至少一條 $e'$ 在 $e$ 被移掉後可以不上去變spanning tree
## P.11
跟P.10條件一樣,只是換成$T'+e-e'$
* 從代數的角度來看像是扣掉自己的edge再加上其他edge,但是從幾何角度來看不太一樣,這邊是先加上edge再考慮後面的後果
T'+e的後果會變成cycle,不過刪掉e'也只會把cycle上的edge刪掉而已,變成acyclic
## P.12
* distance from u to v: the least length of u-v path
* eccentricity: $\varepsilon(u)$, $max_{v \in V(G)} d(u,v)$ (u點到離他最遠的點的距離)
* diameter: $diam(G)$ $max_{u,v \in V(G)} d(u,v)$, the greatest eccentricity
* radius: $rad(G)$, $min_{u\in V(G)}\varepsilon(u)$, the smallest eccentricity
補充:
* diameter: of G is the value of the greatest eccentricity.
* center: the set of nodes v such that $ecc(v)=rad(G)$
>[color=#00a000]
>
>講義上是寫說subgraph induced by ...
>[name=Omnom]
## P.13 Theorem 2.1.11
* If G is a simple graph, then diam G>=3 $\Rightarrow$ diam $\bar{G}<=3$
proof:
diam G>2,there exist nonadjacent vertices u,v with no common neighbor.
由於原圖G 中的u,v不相連,所以首先$\bar{G}$中的u,v會相連,接著原圖G中沒有任何一點會同時和u,v連,因此$\bar{G}$中的點要嘛和u連、和v連、或和u,v都連,因此diam$\bar{G}$<=3